10P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
11 August 2023

REVISED
27 January 2024

ACCEPTED FOR PUBLICATION
5 April 2024

PUBLISHED
17 April 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

J. Neural Eng. 21 (2024) 026046 https://doi.org/10.1088/1741-2552/ad3b3a

Journal of Neural Engineering

PAPER

BRAND: a platform for closed-loop experiments with deep
network models

Yahia H Ali' @, Kevin Bodkin’ (), Mattia Rigotti-Thompson' (), Kushant Patel’, Nicholas S Card’©®,
Bareesh Bhaduri'©, Samuel R Nason-Tomaszewski' (2, Domenick M Mifsud', Xianda Hou’ ®,

Claire Nicolas®*(, Shane Allcroft’®, Leigh R Hochberg™”'*'' (), Nicholas Au Yong®{, Sergey D Stavisky’ @,
Lee E Miller>***@, David M Brandman”"’(® and Chethan Pandarinath"*'>*

! Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA,
United States of America

Department of Neuroscience, Northwestern University, Chicago, IL, United States of America

Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America

Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America

Shirley Ryan AbilityLab, Chicago, IL, United States of America

Department of Neurosurgery, Emory University, Atlanta, GA, United States of America

Department of Neurological Surgery, University of California, Davis, CA, United States of America

Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United
States of America

School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, United States of America

Harvard Medical School, Boston, MA, United States of America

Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Providence VA Medical
Center, Providence, RI, United States of America

Contributed equally to this work.

Author to whom any correspondence should be addressed.

® N o U A W N

E-mail: chethan.pandarinath@emory.edu

Keywords: brain—computer interface, closed-loop, artificial neural network, real-time

Supplementary material for this article is available online

Abstract

Objective. Artificial neural networks (ANNs) are state-of-the-art tools for modeling and decoding
neural activity, but deploying them in closed-loop experiments with tight timing constraints is
challenging due to their limited support in existing real-time frameworks. Researchers need a
platform that fully supports high-level languages for running ANNs (e.g. Python and Julia) while
maintaining support for languages that are critical for low-latency data acquisition and processing
(e.g. Cand C++). Approach. To address these needs, we introduce the Backend for Realtime
Asynchronous Neural Decoding (BRAND). BRAND comprises Linux processes, termed nodes,
which communicate with each other in a graph via streams of data. Its asynchronous design allows
for acquisition, control, and analysis to be executed in parallel on streams of data that may operate
at different timescales. BRAND uses Redis, an in-memory database, to send data between nodes,
which enables fast inter-process communication and supports 54 different programming
languages. Thus, developers can easily deploy existing ANN models in BRAND with minimal
implementation changes. Main results. In our tests, BRAND achieved <600 microsecond latency
between processes when sending large quantities of data (1024 channels of 30 kHz neural data in
1 ms chunks). BRAND runs a brain-computer interface with a recurrent neural network (RNN)
decoder with less than 8 ms of latency from neural data input to decoder prediction. In a
real-world demonstration of the system, participant T11 in the BrainGate2 clinical trial
(ClinicalTrials.gov Identifier: NCT00912041) performed a standard cursor control task, in which
30 kHz signal processing, RNN decoding, task control, and graphics were all executed in BRAND.
This system also supports real-time inference with complex latent variable models like Latent
Factor Analysis via Dynamical Systems. Significance. By providing a framework that is fast,
modular, and language-agnostic, BRAND lowers the barriers to integrating the latest tools in
neuroscience and machine learning into closed-loop experiments.

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1741-2552/ad3b3a
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ad3b3a&domain=pdf&date_stamp=2024-4-17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8618-3837
https://orcid.org/0000-0002-6329-7353
https://orcid.org/0009-0001-7298-274X
https://orcid.org/0000-0002-6858-268X
https://orcid.org/0000-0002-4564-2555
https://orcid.org/0000-0002-7127-0986
https://orcid.org/0000-0001-8200-8193
https://orcid.org/0009-0002-2066-8561
https://orcid.org/0000-0002-7761-3943
https://orcid.org/0000-0002-7903-5091
https://orcid.org/0000-0003-0261-2273
https://orcid.org/0000-0002-7898-7832
https://orcid.org/0000-0002-5238-0573
https://orcid.org/0000-0001-8675-7140
https://orcid.org/0000-0003-3224-7019
https://orcid.org/0000-0003-1241-1432
mailto:chethan.pandarinath@emory.edu
http://doi.org/10.1088/1741-2552/ad3b3a

10P Publishing

J. Neural Eng. 21 (2024) 026046

1. Introduction

In neuroscience and neuroengineering, researchers
use closed-loop systems to respond to neural activity
in real-time—for example, to stimulate a neural cir-
cuit or control an end effector—in order to test prop-
erties of the brain or build devices that interface with
it for a therapeutic purpose. In research with intracor-
tical brain-computer interfaces (iBCI), closed-loop
systems have enabled people with paralysis to control
a robotic arm, spell sentences, and move limbs with
functional electrical stimulation [1-5]. These systems
are referred to as ‘closed-loop’ because the brain con-
trols some action via the iBCI and the user receives
visual feedback from that action in real time.

Closed-loop systems must meet stringent timing
requirements that are derived from the timescales of
the neural processes being studied. Neuronal action
potentials, or ‘spikes, have a waveform on the order
of a millisecond, so systems that process spiking data
need to acquire the waveform at a sub-millisecond
resolution and detect spike events at 1 kHz resolu-
tion. Another important factor is the control latency,
i.e. the time it takes to produce a control signal from
a window of neural activity. For applications such
as using an iBCI to control a computer cursor, the
latency from neural recording to behavioral predic-
tion has typically been 15-20 ms [3, 6]; increasing
latency is known to decrease control performance [7,
8]. We thus want a system that can receive and process
spiking data at 1 kHz and predict movement intention
with less than 15 ms of latency.

Several groups have released software packages
for building real-time systems, but they lack the
features needed to run both the highly-optimized
C/C++ code that handles data acquisition and the
modular Python code that modern machine learn-
ing libraries are built in. They are typically designed
to run code in a limited set of programming lan-
guages, making it difficult to find a system that
provides broad support for the many high-level lan-
guages used in the neuroscience field, including
Python, MATLAB, and Julia. Simulink Real-Time
(Mathworks) provides a visual programming inter-
face that supports real-time MATLAB and C/C++
code [9]. RTXI and Falcon provide sub-millisecond
timing guarantees but are restricted to running
C/C++ code [10, 11]. These existing systems lack
the language support and communication mechan-
isms needed to run artificial neural networks (ANNs)
natively in their original programming environment,
presenting a barrier to deploying ANN models in
closed-loop experiments. LiCoRICE supports inter-
process communication (IPC) between Python and
C [12], but to our knowledge it has not yet been
demonstrated in multi-computer applications, with
real-time ANN deployment, or used by a wide set
of labs.

Y H Ali et al

Partially due to the challenge of deploying them
in real-time, computational models that are prom-
ising for closed-loop neuroscience applications often
go untested in a closed-loop setting. These models
were developed with offline analyses on existing data,
which are important for rapidly iterating on model
architectures and hyperparameters but fall short of
capturing the real-time response of the brain in situ-
ations involving closed-loop feedback. For example,
closed-loop feedback is known to be a critical com-
ponent of iBCI control, so, in the iBCI context, off-
line analysis can provide only a partial validation of
a decoding model [7, 13]. Evaluating such models
in closed-loop iBCI experiments would be a worth-
while research direction, but the space of models
that can be tested is limited by the labor-intensive
(and potentially error-prone) process of reimple-
menting models that contain millions of paramet-
ers to achieve compatibility with existing closed-loop
software architectures. Thus, there is a ‘translation
gap’ between the development of new computational
models and the evaluation of those models in closed-
loop experiments.

We developed the Backend for Realtime
Asynchronous Neural Decoding (BRAND) to address
three critical needs: (1) running closed-loop ANN
inference in the same runtime environments used
for offline analyses, (2) supporting several program-
ming languages, and (3) providing sub-millisecond,
high-bandwidth communication between system
processes. This system uses the popular Redis in-
memory database, which provides it with low-latency
IPC and broad compatibility across the 54 differ-
ent programming languages for which Redis client
libraries exist [14]. With BRAND, researchers can
easily integrate a variety of computational models
into their experimental pipelines by structuring those
models to read from and write to the Redis data-
base. Computational models can then integrate with
the system components responsible for signal pro-
cessing, behavioral tasks, and visual feedback with
sub-millisecond communication latency. This results
in a system that makes it easier to prototype and study
new computational models, processing techniques,
and behavioral tasks in a research setting.

In this paper, we validate BRAND in three con-
texts: (1) high-bandwidth IPC, (2) BCI control with
ANN:gs, and (3) neural data simulation. BRAND’s IPC
latency was consistently less than 600 microseconds
with inputs of up to 1024 channels of 30 kHz neural
data. In the BCI control benchmark, BRAND runs
all of the components needed to acquire and pro-
cess 30 kHz neural data over a network and produce
hand movement predictions with an ANN in less than
8 ms. Using this pipeline, we conducted a closed-loop
demonstration of iBCI cursor control with a parti-
cipant in the BrainGate2 clinical trial (CAUTION:
Investigational device. Limited by federal law to

10P Publishing

J. Neural Eng. 21 (2024) 026046

investigational use.). BRAND was also used to gen-
erate simulated neural data for both speech decod-
ing and cursor control. With these results, BRAND
is shown to be a versatile system for building a wide
range of closed-loop experiments with low latencies
and full support for state-of-the-art machine learning
techniques. BRAND’s deployment in multiple BCI
groups (7, as of this writing) has resulted in many
users providing feedback on its documentation, usab-
ility, and software engineering practices.

2. Methods

2.1. System architecture

BRAND follows a modular design that divides the
control of a neuroscience experiment into small
reusable components, each of which is designed to
complete a part of the overall computational pipeline.
We refer to each component as a node; several nodes
are combined together to form a graph. For example,
a minimal graph for an iBCI experiment might con-
sist of a feature extraction node (e.g. computing local
field potential power or spike rate), a decoding node,
and an effector control node (figure 1(a)). Nodes
run in parallel as separate processes, which allows
us to decouple critical, highly-optimized code like
data acquisition from slower, experimental code like
neural network inference. Data are passed between
nodes asynchronously via Streams in a Redis database.
Each node can publish data to several output streams,
and receive data by subscribing to several input
streams. These streams provide a straightforward way
to build a chain of interchangeable nodes that run in
parallel. Running nodes in parallel allows BRAND to
process incoming data at a higher rate than an equi-
valent system that runs sequentially (figures 1(b) and
(c)). Streams are append-only logs that persist in the
database even when data have already been read, so
they also maintain a record of all data within an exper-
iment and can be saved for later analysis.

In BRAND, graphs for closed-loop experiments
are configured using Yet Another Markup Language
(YAML). Each graph is configured by a single YAML
file that lists the nodes that will be run in the graph
and the parameters for each of those nodes. A script,
called supervisor, parses this YAML file and then ini-
tializes the specified nodes as separate Linux pro-
cesses. The parameters for the graph are then sent to
those nodes through Redis. Once a graph is loaded,
the supervisor may then start or stop nodes accord-
ing to commands received via Redis. In a typical
experimental session, a researcher will supply a list
of graphs (as YAML files) that each configure the
system for a different step of the experiment. The
researcher will start and stop these graphs by sending
commands to supervisor. BRAND provides flexibil-
ity in this experimental workflow, allowing research-
ers to control the system with the Redis command

3

Y H Ali et al

line or develop their own graphical user interfaces
for selecting graphs and monitoring or adjusting the
parameters of their nodes. Since Redis enables com-
munication across multiple computers on the same
network, BRAND includes another launcher script
(called ‘booter’) that extends supervisor’s capabilit-
ies to additional machines. To run nodes across sev-
eral machines, the researcher would start a supervisor
instance on the machine that hosts the Redis database
and start a booter instance on each client machine.
Nodes can then be configured to run on any of these
machines and send and receive data from the com-
mon Redis database. Users can also configure the pro-
cess priority and processor affinity for each node to
make full use of the resource allocation tools available
in Linux.

Redis is the open-source database system used
with BRAND. The Redis database provides the inter-
face for communicating across nodes and logging
data. BRAND defines how those nodes should be
configured and executed to achieve low-latency per-
formance while allowing for collaborative develop-
ment of new nodes. To maintain access to the full
suite of Redis features, BRAND does not impose
any requirements on the way in which program-
mers interface with the Redis database. However,
programmers are encouraged to use the Stream
data type for communication between nodes, as
it facilitates data logging, and provides a standard
asynchronous communication mechanism between
nodes. Redis can either be configured for commu-
nication via Transmission Control Protocol (TCP)
sockets, which allows multi-computer communica-
tion, or Unix sockets, which allows for faster IPC
within a single machine. Libraries for Redis exist in
many different languages, including C, Python, Go,
Julia, and MATLAB [14]. With BRAND, the optim-
izations to achieve low-jitter real-time performance
(PREEMPT_RT kernel, setting process priorities) are
done at the system level, not at the level of the pro-
gramming language, so we do not expect to see a
loss of real-time performance if languages other than
Python or C are used.

In summary, BRAND was designed with a mod-
ular node-graph structure that is configurable via
YAML files and uses Redis for communication across
multiple programming languages and multiple com-
puters. With these design choices, we aim to make it
easy to both integrate and share individual compon-
ents of an experimental pipeline across experiments

and labs.

2.2. Validation

We tested BRAND on the Linux operating system.
Most demonstrations in this manuscript were con-
ducted using Ubuntu 20.04 LTS and the Linux ker-
nel with a PREEMPT_RT patch (version 5.15.43-
rt45) [15] and run on a Dell Optiplex 7000 small
form factor PC with an Intel i9-12900 processor and

10P Publishing

J. Neural Eng. 21 (2024) 026046

Y H Ali et al

Data Input

Data Output

(Feature Extraction)

Decoder

Effector Control

-

Redis In-Memory Database

Sequential Execution
update rate

<&
I‘

Data Input
Feature |.
Extraction

| I
Decoder - I

I
Effector | I
Control |

Parallel Execution

update rate
"

Data Input

Feature
Extraction

Decoder

Effector
Control | I

Time N

A

Figure 1. Software architecture schematic. (a) BRAND consists of a set of processes, or ‘nodes), that each receive inputs and/or
produce outputs during an experiment. (b) If nodes were run sequentially (as if they are in a script), all nodes would need to
finish processing a given sample before the next one could be processed. Delays in any part of the processing chain would cause
the whole system to fall behind and delay critical events like acquiring an incoming sample. (c) In BRAND, nodes run in parallel
and communicate asynchronously, allowing them to maximize the rate at which data are processed and minimize the chance that
delays in downstream nodes would cause the system to fall behind.

128 GB of memory. The speech simulator bench-
mark (figure 5(d) and (e)) was conducted on an AMD
Ryzen 9 7950X processor running Ubuntu 22.04.2
LTS and Linux kernel 5.19.0—41-generic (without the
PREEMPT_RT patch). The communication latency
benchmarks in figures S3 and S4 were conducted on
a Dell Optiplex 7000 small form factor PC with an
Intel i7-12700 processor and 64 GB of memory run-
ning a Linux kernel with a PREEMPT_RT patch (ver-
sion 5.15.43-rt45).

2.2.1. Communication latency

To test the communication latency of the Redis
database, we ran a benchmark in which packets
approximately matching the size of 30 kHz neural

data from the Blackrock Neural Signal Processor
(Blackrock Neurotech, Salt Lake City, Utah, USA)
(NSP) were sent from a publisher node to a sub-
scriber node. We recorded timestamps from the sys-
tem clock (with Python 3.8.2°s time.monotonic_ns()
function) before the data were written to Redis in
the publisher and after the data were read from
Redis in the subscriber. The difference between these
two timestamps was considered the ‘communication
latency’ of the Redis database when using Unix sock-
ets on a single machine. For each test condition we
measured 300 000 pairs of timestamps. Both the pub-
lisher and subscriber nodes were implemented in
Python and then compiled using the Cython package
(version 0.29.18).

J. Neural Eng. 21 (2024) 026046

Y H Ali et al

Publisher Subscriber Subscriber Subscriber Subscriber
Redis Database
N = 300,000 N = 300,000 N = 300,000
b, 1284 ¢ - 100 -4 d o]
“E’ 256 —p— L 200{ —44— § 3] th
8 5124 —4 £ 5001 4 — S 4 +—
© 10244 - T 10004 +4 5 4—
0 200 400 600 0 200 400 600 0 200 400 600
Latency (us) Latency (us) Latency (us)
e BN 128 W 512 f BN 100 NN 500 g N2 s
. 256 1024 . 200 1000 - 3 5
—_ HIY'
82 104 104 Hﬁﬁp
=3 o | M
c‘n% ion 10° rlllH 10 Laﬁ"lrh
= 100 s 1, 100l Bt o
0 200 400 600 0 200 400 600 0 200 400 600

Latency (us)

Latency (us)

Latency (us)

Figure 2. BRAND achieves low-latency inter-node communication. (a) To test inter-node communication latency, a publisher
node sends 30 kHz neural data (grouped in 1 ms packets) to a subscriber node via the Redis database. Violin plot of the resulting
latency measurements showing that the inter-node communication latency is consistently below 600 microseconds even as (b) the
channel count is scaled up to 1024 channels, (c) the sampling rate is changed, and (d) additional subscriber nodes are added.
Vertical lines indicate the location of the median in each violin. Histograms of these data show the distribution of latency
measurements for each (e) channel count, (f) output rate, and (g) number of nodes.

We ran three variations of this benchmark when
varying (1) the number of input data channels, (2) the
publishing rate, and (3) the number of nodes. In all
tests, publisher packets were encoded as arrays of 16-
bit integers, and the number of values in each array
was 30 times the number of channels (since we sent
one packet of 30 kHz data every millisecond). In the
first test, a publisher node sent packets at 1000 Hz
and a subscriber node read each of them and logged
the timestamp at which it received them. This test was
repeated for four different packet sizes: 128, 256, 512,
and 1024 channels. In the second test, the number of
channels was held constant at 128, and the output rate
was set at 100, 200, 500, or 1000 Hz. In the third test,
2—4 nodes were chained together and all but the last
node forwarded the data they had received as input.
This means that each subscriber node (except for
the last one) writes the data it receives back into the
Redis database. This test was run with 128 channels
and a 1000 Hz sampling rate (figure 2(a)). The sup-
plementary material includes additional variations of
this test in which the number of channels and num-
ber of nodes are varied simultaneously (figure S3) and
a lower-bandwidth signal is used to test communica-
tion latency at up to 16 nodes (figure S4).

2.2.2.iBCI control

To evaluate the latency of BRAND when performing
the processing tasks needed for an iBCI, we bench-
marked an iBCI control graph with two different
decoders. In this benchmark, simulated 30 kHz data

from two NSPs (firmware version 6.05.02) with a
Neural Signal Simulator (Blackrock Neurotech, Salt
Lake City, Utah, USA) were acquired over the net-
work and then filtered with a 250 Hz high-pass filter
applied forward and backwards to a 4 ms buffer of the
incoming data. The filtered data were then threshol-
ded at —3.5 times the root-mean-square voltage of
each channel to detect threshold crossings within
each 1 ms window. These threshold crossings were
then binned into 10 ms bins and normalized before
being passed to a decoder. The decoder’s cursor velo-
city predictions were smoothed with an exponential
moving average and scaled before the cursor position
and task state were updated (figures 3(a) and S1(a))
[16, 17].

For neural decoding, we implemented two differ-
ent decoding algorithms: an optimal linear estimator
(OLE) and a recurrent neural network (RNN). The
OLE decoder estimated the cursor velocity as a linear
combination of the input features at a single time step.
The OLE decoder had a 384-dimensional input con-
sisting of threshold crossings and spike-band power
[18] from 192 channels of neural data. Spike-band
power was computed by applying a 250 Hz high-
pass filter to the 30 kHz neural data, squaring the
result, and averaging across time within each 1 ms
window. Each feature was normalized using its mean
and standard deviation from the previous period of
neural recording. This decoder was fit using ridge
regression, with the weight of the L2 regularization
term being chosen via three-fold cross-validation.

10P Publishing

J. Neural Eng. 21 (2024) 026046

The RNN decoder was implemented in PyTorch
1.12.1 and PyTorch Lightning 1.7.1 and consisted of
a 76-unit long short-term memory (LSTM) layer fol-
lowed by a two-unit linear fully-connected layer. This
decoder received 192 channels of binned threshold
crossings as input and applied normalization using
the mean and standard deviation of the training
data. Its L2 regularization, dropout, learning rate, and
LSTM dimensionality were chosen using a random
search on previously-collected data. During the ses-
sion, this decoder was trained on four minutes of
closed-loop cursor control data with the OLE decoder
using an Nvidia GeForce RTX 3090 graphics pro-
cessing unit (GPU).

To highlight the capabilities of the BRAND sys-
tem, we also ran real-time inference with two large
neural networks designed for feature extraction:
the Neural Data Transformer (NDT) and Latent
Factor Analysis via Dynamical Systems (LFADS).
These autoencoder networks denoise neural data by
modeling the dynamics of population-level activity
and could be useful additions to many closed-loop
neuroscience experiments [19, 20]. Both networks
were run as Cython-compiled nodes in BRAND
using their published PyTorch (version 1.12.1) and
Tensorflow (version 2.2) implementations. Inference
latencies were measured by comparing the monotonic
clock timestamps between each node’s input and
output.

2.2.3. Simulation

We also benchmarked the timing performance of
BRAND when operating as a neural data sim-
ulator. For this, we implemented two different
simulators: one for cursor control and one for
speech decoding. In the cursor control simulator, the
human-controlled movements of a computer mouse
were translated into firing rates via a cosine tuning
model. In the speech simulator, audio spoken into a
microphone was encoded as mel-frequency cepstral
coefficients (MFCC) [21], which were then used to
generate neuronal firing rates. Both simulators then
generated 96 channels of 30 kHz simulated voltages
from the firing rates and broadcast them using the
same packet structure as Blackrock NSPs. Latency
measurements were taken using timestamps logged
immediately prior to writing the output of each sim-
ulator node to Redis.

2.3. Closed loop validation

2.3.1. Clinical trial participant

T11 is an ambidextrous man, 38 years old at the time
of the study, who had suffered a C4 AIS-B spinal
cord injury approximately 11 years prior to enrolling
in the BrainGate2 clinical trial (ClinicalTrials.gov
Identifier: NCT00912041). Neural data were recorded
from two 96-channel microelectrode arrays placed in

Y H Ali et al

the ‘hand knob’ area of his left (dominant) dorsal
precentral gyrus in the BrainGate2 trial. Data were
collected on Trial Day 1321 (1,321 d after surgical
placement of the arrays) and Trial Day 1491. The
Institutional Review Boards of Mass General Brigham
(#2009P000505) and Providence VA Medical Center
granted permission for this study. Participant T11
provided informed consent to participate in this
study. This study was performed in accordance with
the Declaration of Helsinki. All system security, data
security, and data privacy practices were consistent
with institutional guidelines and the approved IRB
protocols.

2.3.2. Cursor control task

We asked participant T11 to perform the clas-
sic radial-8 center-out-and-back cursor control task
[22]. This research session was organized into ‘blocks,
which are periods of data collection lasting 3—4 min.
During these sessions, T11 was seated comfortably
in his wheelchair and looked at a computer monitor.
We began with an open-loop cursor calibration block,
in which the cursor automatically moved to targets
which T11 was asked to attempt to follow with his
right thumb as if using a joystick. We then trained
an OLE decoder to predict the cursor’s velocity from
neural data [23]. In the next block, we set up the
OLE decoder to control the cursor velocity and asked
him to attempt to move it to the active target. Data
from this block were used to train a RNN decoder
to predict his intended cursor velocity. The intended
cursor velocity was approximated as the vector result-
ing from subtracting the cursor’s position from the
target’s position scaled to the original OLE predic-
tion’s magnitude or zeroed if the cursor reached the
target [24]. In a later block, T11 was asked to per-
form the radial-8 task again with this RNN decoder.
The initial open-loop block lasted three minutes while
each of the subsequent closed-loop blocks lasted four
minutes.

2.3.3. Signal processing

Neural data were filtered by the Blackrock NSP at
0.3 Hz-7.5 kHz and then broadcast in UDP pack-
ets over Ethernet. These data were acquired and pub-
lished to Redis with a BRAND node and then, in other
nodes, the data were common-average referenced,
filtered, and thresholded to yield threshold crossing
and spike-band power features. Those features were
then grouped into 10 ms bins, normalized, and sent
into the decoder node [6]. The decoder’s predictions
were smoothed exponentially and scaled according
to a gain parameter and then passed to a finite-state
machine (FSM) node that updated the cursor’s posi-
tion and task state. Finally, a graphics node rendered
and displayed the task on a separate PC according to
the cursor and target information sent by the FSM.

10P Publishing

J. Neural Eng. 21 (2024) 026046

Y H Ali et al

a Feature - . .
NSP1 Input Binning RNN Smoothing Task Logic
— A ;
Redis 30 kHz voltages 1kHz spikes binned spikes predicted velocity smoothed velocity
Feature
Feature Extraction i
b - ¢ Feature Extraction | k’
- & Buffering
Binning
° 108 4 BN RNN Binning *l
<@ Smoothing
g‘ BN Task Logic RNN A +
©
2] .
10" 4 Smoothing A {%F
L Task LOgiC 7 N =30,000 "*
0 2 4 6 0 2 4 6

Node Latency (ms) Cumulative Latency (ms)

Figure 3. BRAND can be used for low-latency iBCI control. (a) To test end-to-end iBCI control latency, we ran a graph that
received 30 kHz 96-channel neural spiking data via UDP (Ethernet) from two Blackrock NSPs (total of 192 channels), extracted
spiking features at 1 kHz, binned spikes into 10 millisecond bins, ran decoding, and updated the location of the cursor in the task.
This test used a recurrent neural network (RNN) decoder. This graph was benchmarked using simulated data. (b) Latency
measurements for each node were plotted as histograms (N = 30 000 packets). (c) The cumulative latency is plotted relative to the
time at which each node (vertical axis) wrote its output to the Redis database. On the horizontal axis, zero is the time at which the
last sample in each bin was received over the network from the NSPs. (d) Cursor positions during iBCI-enabled cursor control.

3. Results

3.1. Inter-process communication latency

We evaluated BRAND using a publisher-subscriber
benchmark, where 30 kHz neural data emitted at
1 kHz (chosen to reflect the sampling rates of the
Blackrock NSP system for intracranial recordings)
were streamed from the publisher to the subscriber
in one-millisecond packets. In this test, we found that
BRAND had a communication latency of less than
600 microseconds when sending up to 1024 channels
of neural data. This held true for several sampling
rates and also when we increased the number of sub-
scribers in the graph from one to four (figure 2).
These results indicate that BRAND’s chosen commu-
nication mechanism, Redis, is fast enough to consist-
ently transmit the high-bandwidth data encountered
in neural recordings with sub-millisecond latency.

3.2.iBCI control

To evaluate the practical application of BRAND in an
iBCI control setting, we developed a benchmark in
which 30 kHz neural data were acquired, filtered, and
thresholded to obtain spiking features (see Methods
for details). The features were then binned and passed
into two different types of decoders (OLE and RNN),
and the decoder predictions were sent to a node that
controls the task state.

For these decoders to be considered real-time,
they needed to process incoming data within a set
latency deadline and with minimal jitter. In this
case, for a 10 ms bin size, a new sample arrives
at the decoder every 10 ms. We defined the ‘per-
node latency’ as the difference between the time the

previous node wrote its output to Redis and the time
the current node wrote its output to Redis. In both
cases, these times were measured immediately before
calling the database write operation that produced
each node’s output. Real-time processing would be
achieved by having a per-node latency of less than
10 ms for each of these decoders. When using the OLE
decoder, we found decoding node latencies to be con-
sistently less than 0.6 ms (figure S1). With the RNN
decoder node latencies were consistently below 1.2 ms
(figure 3). Both of these decoders were well below the
10 ms deadline for real-time processing.

In closed-loop tests with these decoders, parti-
cipant T11 performed a task in which he moved a
cursor to one of eight radially-arranged targets on
a screen and then returned the cursor to the cen-
ter (Trial Day 1321). T11 achieved a median tar-
get acquisition time of 1.76 £ 0.63 s with the OLE
decoder and 1.79 & 0.74 s with the RNN decoder. This
performance was consistent with previous demon-
strations of this now-standard cursor control BCI task
(6, 25].

To further evaluate the advanced ANN infer-
ence capabilities that BRAND provides, we sought to
benchmark the latencies of two state-of-the-art latent
variable models: LFADS and NDT [19, 20]. LFADS
and NDT were designed to improve the extraction
of neural features for use in decoding, and have pre-
viously achieved a velocity prediction R? of 0.9097
and 0.8862, respectively in the MC_Maze 5 ms’ data-
set in the Neural Latents Benchmark [26], which is a
marked improvement over the 0.6238 achieved using
smoothed binned spikes. Each model was made up of
several neural network layers that rely on specialized

10P Publishing

J. Neural Eng. 21 (2024) 026046

a Signal Input

1 kHz 256-channel spikes 100 Hz binned spike counts
Redis Database

Binning

Latent Variable
Model

\ A M

Y H Ali et al

[Decoder J [Task Control J

100 Hz inferred firing rates 100 Hz cursor velocity

b c B
Representation of 1 04 4 NDT N = 30,000
Population State § LFADS
'8&" T~ —— | o] | Transformer § 10° 4
2 ééba Q& Tranﬁiormlr Laer D
y < 402
N o a
NN > ;
r ¥ ¥ ¥S O RNN % 10" A
& [RN Encoder- %)
| IRl Decoder 100 4
T T T T T 1
Time ——

0 1 2 3 4 5 6
Node Latency (ms)

Figure 4. BRAND runs ANN latent variable models with low latency. (a) To test the inference latency of LFADS and NDT, we
inserted them into an iBCI control graph that receives 256 channels of simulated threshold crossings at 1 kHz, bins them, runs
inference with LFADS or NDT, runs decoding, and updates the task state. Both LFADS and NDT used a sequence length of 30
bins. (b) LFADS and NDT use different types of sequence models, an RNN and a Transformer, respectively. Reprinted from Ye
and Pandarinath 2021 [19]. (c) NDT inference times were consistently below 2 ms, while LFADS inference times were consistently

below 6 ms. Reproduced from [19]. CC BY 4.0.

Python libraries (Tensorflow and PyTorch) for train-
ing and inference. Previous real-time systems that
lacked Python support would have required a full
reimplementation of these models in another lan-
guage like C or C++ to run this test [11, 27].
With BRAND, we can simply connect the existing
TensorFlow and PyTorch implementations of these
models to the fast Redis IPC mechanism that is used
throughout the system. In our testing, LFADS infer-
ence times were consistently below 6 ms and NDT
inference times were below 2 ms, with both models
staying under our 10 ms latency criterion for real-
time inference (figure 4).

In a later research session with Participant T11
(Trial Day 1491), we made latency measurements
while he performed a cursor control task using an
OLE decoder with and without the LFADS model. We
found that BRAND maintained real-time perform-
ance under both decoding conditions. Without the
LFADS model, end-to-end decoding latency was con-
sistently under 8 ms. With the LFADS model, the
maximum end-to-end decoding latency increased to
16 ms (figure S5).

3.3. Neural simulation

Neural data simulators have been a critical com-
ponent of neuroscience research, particularly in the
clinical iBCI research. Simulators enable the testing
of iBCI decoding algorithms and tasks before they
are used in a clinical research setting, where time
with participants is extremely limited and valuable.
This allows researchers to rigorously validate their
signal processing, decoders, and tasks prior to an
experiment. Full system simulation also helps lower
the chance that software issues will impede data
collection.

We evaluated whether BRAND was able to act as
a real-time simulator for testing iBCI applications.
With its modular design, we can use interchangeable
inputs and firing rate encoding models to support
simulating neural activity during different types of
behavior. In this case, we tested two simulators: one
for cursor control and one for a speech decoding. We
demonstrated that BRAND can run both simulations
in real-time. The cursor control simulator ran with
less than 4 ms of end-to-end latency and the speech
simulator ran in less than 3 ms (figure 5).

4. Discussion

We introduce and validate the BRAND real-time
asynchronous neural decoding system, a real-time
software platform that aims to meet the need in
contemporary experimental neuroscience and neur-
oengineering for software frameworks that support
both ANN inference in Python and low-latency con-
trol for intracortical BCIs. BRAND fills this need by
providing three critical features: (1) running closed-
loop ANN inference in the same runtime environ-
ments used for offline analyses, (2) supporting a wide
range of programming languages, and (3) provid-
ing sub-millisecond high-bandwidth communication
between system processes. The latency and jitter of the
system were benchmarked in three settings: streaming
of high-bandwidth neural data, simulation of neural
data from user input, and iBCI control of a computer
cursor. We demonstrated that BRAND can perform
low-latency data acquisition in C and Python while
also running real-time inference with multiple neural
network libraries. By providing a language-agnostic
framework for real-time software, BRAND reduces
the need to rewrite complex computational models

https://creativecommons.org/licenses/by/4.0/

10P Publishing

J. Neural Eng. 21 (2024) 026046

Y H Ali et al

a Audio Input (MFCC] [Firing Rate Model] [Spike Generation] [Packet Generation]
: N A Al A
Redis spoken audio cursor velocity MFCCs simulated firing rates simulated voltages
Mouse Input
tl Audio Firing Rates Spikes Voltages
3 0 AL
s = @ @ E.
© 2 2 2 y 2
B 2 c c c
£ © ‘”llluh [i ||W i g E g
& 3 fpn | © © (&)
[} | | | I
b r T T T T
1000 0 1000 0 1000 0 1000 0 20 40
Time (ms) Time (ms) Time (ms) Time (ms) Time (ms)
Cursor Velocity Firing Rates Spikes Voltages
3 — X 3 3 s
2z —y £ g £ 1
S]] <
S & & &
g T T T T T ' T ' ' T '
500 1 000 1 500 0 500 1000 1500 0 500 1000 1500 0 20 40
Time (ms) Time (ms) Time (ms) Time (ms)
dw mm MFCC e MFGC 4 oy N = 60,000
2 10° 1 - Firilng Rate M9d9| Firing Rate Model —aa)—
5 100 4 B Spike Ge"e’a"‘{” Spike Generation —_—
I [Packet Generation Packet Generation - —
T T T T T T T — T T T
0.0 . 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
Node Latency (ms) Cumulative Latency (ms)
f g
- N = 60,000
8 105 B Firing Rate Model Firing Rate Model +
E‘l I Spike Generation Spike Generation - 4&
$ 10 4 [Packet Generation .
Packet Generation *H
T T T T T T T T
0.0 0. 2 0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0
Node Latency (ms) Cumulative Latency (ms)
Figure 5. BRAND enables low-latency, real-time simulation of neural data. (a) In the speech simulator, spoken audio is translated
into spectral features and, from there, into neural firing rates with a cosine tuning model. These firing rates are used to generate
and broadcast 30 kHz voltage recordings as ethernet packets. In the cursor control simulator, computer mouse movements are
translated into neural firing rates with a cosine tuning model. (b) Examples of data recorded from the speech simulator. (c)
Examples of data recorded from the cursor control simulator. (d) Latency of each node in the speech simulator and (e) cumulative
latency. (f) Latency of each node in the cursor control simulator and (g) cumulative latency.

when integrating them into a real-time experiment,
allowing researchers to more rapidly explore and val-
idate novel computational models.

4.1. Open-source software

The BRAND code is publicly available, and users
are encouraged to develop plugins (nodes) that
make BRAND work with additional recording sys-
tems, models, and tasks. The open-source approach
provides two main benefits: code duplication is min-
imized and replicating studies across research groups
is easier. BRAND’s dependencies, including Python,
Redis, and Linux, are also free and open-source, so
users can build experimental systems without having
to pay software licensing fees. The current source code
is at: github.com/brandbci/brand. The code has been
released under the MIT license.

BRAND’s modular design supports seamless code
sharing across labs. By standardizing around a com-
mon IPC mechanism with Redis, individual nodes
(like models or signal processing steps) can be integ-
rated into experimental pipelines in different labs
without the need to restructure other components of

each lab’s systems. For example, two labs with differ-
ent data acquisition systems can use the same decod-
ing models and behavioral tasks while maintaining
separate implementations of their data acquisition
node. Similarly, a computational lab can develop and
share a real-time implementation of their new decod-
ing model, and labs that conduct experiments can
integrate that model into their experimental pipeline
without needing to modify their existing data acquisi-
tion code. Developers in the wider neurotech industry
have also begun to develop tools that expand the cap-
abilities of BRAND by adding features like real-time
data visualization (figure S2).

4.2. Comparison to existing systems

Given the fundamental importance of software
in performing high-quality neuroscience experi-
ments, several groups have released software pack-
ages for closed-loop experiments. Systems like
Simulink Real-Time [6], RTXI [10], and Falcon
[11] provide tight timing guarantees but lack the
Python support that is essential for machine learn-
ing research. Timeflux [28] and LabGraph [29]

https://github.com/brandbci/brand

10P Publishing

J. Neural Eng. 21 (2024) 026046

solely support Python, and thus suffer from the
lack of support for lower-level languages like C that
are more suitable for latency-critical applications.
LiCoRICE provides Python and C support, but does
so via a custom shared memory interface instead of
Redis [12].

These competing systems all require developers
to choose from a limited set of programming lan-
guages, which restricts the pool of existing librar-
ies that can be used when developing experiments.
For example, the machine learning community has
standardized around the use of Python, and sev-
eral libraries (e.g. PyTorch, TensorFlow, Keras, JAX)
have been developed to perform the difficult task of
training ANNs on GPUs and other hardware accel-
erators. Meanwhile, the C programming language
has long been the foundation of Linux development
and offers the low-level control of memory man-
agement that is often critical for optimizing com-
pute latency, as well as interfacing with input/output
devices and other peripherals. Other languages like
Julia, R, and MATLAB are widely used for computa-
tional research. Javascript and its derivatives play an
important role in web development and GUIs. C# and
Java are widely used in game (and thus task) devel-
opment. Dareplane, another recently-published real-
time framework, has been designed to provide broad
language compatibility, but unlike BRAND, it has not
been validated to support the high-bandwidth com-
munication needed for iBCIs that contain hundreds
of channels [30].

We note that another system that is capable of
publisher-subscriber communication among several
distributed nodes is the Robot Operating System
(ROS) [31]. We have not seen it used in BCI applic-
ations with the same latency requirements as our
work, but, given its extensive use in robotics, it seems
capable of being adapted to this purpose. BRAND’s
configuration, data logging, and session orchestra-
tion tools are more tailored to BCI than ROS’s, so we
expect BRAND to be the preferred system for BCI. If
needed, BRAND can be made to interface with ROS
by creating a BRAND node that communicates with
ROS nodes in their expected format.

From a latency perspective, the Simulink real-
time systems most commonly used for iBCI stud-
ies have been reported to have an end-to-end latency
of 13-20 ms for cursor control [3, 7]. In this paper,
BRAND cursor control graphs with similar decoders
had end-to-end latencies of 7-9 ms (figures S1 and
S5). Note, the latency measurements in [3] and [7]
include the internal latencies of the Blackrock hard-
ware (typically 6 ms) and display, while the BRAND
latencies reported here do not. We thus approximate
that BRAND at least matches, if not exceeds, the per-
formance of the Simulink Real-Time systems used in
previous iBCI studies.

10

Y H Ali et al

4.3. Distributed computing

It is often useful to distribute computational tasks
like signal processing, model training, and graphics
rendering across multiple machines to make use of
additional compute resources and avoid overload-
ing a single computer. For this to work in a real-
time system, processes running on each machine
need to be able to pass data between one another
with low latency. BRAND readily supports distrib-
uted computing, since Redis is designed to work
across large clusters of computers that rapidly share
data and coordinate to perform large-scale computa-
tional tasks. Communication with the Redis database
is done with the same commands and syntax whether
the database is hosted locally or remotely, so nodes
can seamlessly be moved from machine to machine
without changing their implementation. We used this
feature extensively in our development to run simu-
lators and GPU-related code (such as neural network
training and graphics rendering) on their own dedic-
ated machines to avoid interfering with the latency-
critical signal processing that occurs on our real-time
decoding machine.

4.4. Data privacy and security

BRAND is based on a commonly-used operat-
ing system (Linux) with an in-memory data store.
Researchers working with closed-loop systems in
human subjects research settings are responsible for
ensuring their use of BRAND follows all considera-
tions for working with research participant data (e.g.
data privacy and security standards, HIPAA require-
ments, adherence to approved IRB protocols, prac-
tices consistent with the informed consent provided
by participants). For example, the use of BRAND in
this study met all IRB-approved study protocols for
information security, handling of potentially sensit-
ive information, data transfer and storage, and study
participant privacy and consent. Even outside of clin-
ical studies, many institutions have standard policies
for securing Linux systems or software running in
networked applications that may apply when using
a BRAND system. Researchers should ensure that
their network security is compliant with institutional
guidelines and commensurate with the sensitivity of
the data that is being handled.

4.5. Future directions

While the demonstrations in this study involved ste-
reotyped block design-based tasks, BRAND could
potentially be extended for personal use of an
iBCI [32]. BRAND’s modular structure provides a
straightforward path to making nodes that can be
hot-swapped without interrupting device use. For
example, a participant may want to calibrate and
deploy a new decoder every few hours to main-
tain high-performance control or select a different

10P Publishing

J. Neural Eng. 21 (2024) 026046

decoder for different tasks. A participant may also
want to control a tablet instead of a full-sized com-
puter. BRAND could be extended to this use case by
running the Redis database on a separate computer
and using an on-tablet Redis client to query the data-
base over a local network. BRAND serves as a useful
environment for prototyping this kind of personal use
software in research studies.

BRAND also fills a critical need in speech iBCI
research, where ANNs have enabled several recent
advances in brain-to-text decoding [33, 34] and are
anticipated to play an important role in the develop-
ment of real-time speech synthesis BCIs [35]. Unlike
text decoding, speech synthesis is expected to bene-
fit from millisecond-scale closed-loop feedback that
mimics the way in which able-bodied people can
hear their own voice while speaking. BRAND is
uniquely suited to this research area by providing the
combination of ANN support and sub-millisecond
IPC latency that is needed for a real-time speech
synthesis BCL

BRAND could also become a useful tool for neur-
ological research in general. The development of new
computational models is a critical avenue for studying
neural activity across several brain functions, includ-
ing movement, sensation, and cognition [36, 37].
Advances in modeling and decoding neural activ-
ity could lead to therapeutic benefits if paired with
devices that interface with the brain, like respons-
ive neurostimulators for epilepsy [38]. Existing clin-
ical systems for responsive neuromodulation or
deep brain stimulation allow streaming of data
over Ethernet and could possibly be integrated into
BRAND for use in research studies.

Data availability statement

The data that support the findings of this study are
openly available at the following DOI: https://doi.org/
10.5281/zenodo.10547705.

Acknowledgments

The authors would like to thank Participant T11,
his family and caretakers, Beth Travers, Dave Rosler,
and Maryam Masood for their contributions to this
research. We also thank Antonio Eudes Lima, Diogo
Schwerz de Lucena, and Robert Luke at AE Studio for
their development of the Neural Data Visualizer. This
work was supported by the Emory Neuromodulation
and Technology Innovation Center (ENTICe), NIH
Eunice Kennedy Shriver NICHD K12HD073945,
NIH-NINDS/OD DP2NS127291 (CP), NIH-
NIDCD/OD DP2DC021055, Simons Collaborations
for the Global Brain Pilot Award 872146SPI (SDS),
NIH-NIBIB T32EB025816 (YHA), NIH-NICHD
F32HD112173 (SRN), NIH-NIDCD U01DC017844,

11

Y H Ali et al

and Department of Veterans Affairs Rehabilitation
Research and Development Service A2295R and
N2864C (LRH). The content is solely the responsib-
ility of the authors and does not necessarily represent
the official views of the National Institutes of Health,
or the Department of Veterans Affairs, or the United
States Government.

Author contributions

Y H A, DM B, and C P conceived the project. Y H A,
KB,MR,KPNSC,BB,SRN,DMM, XH, and D
M B contributed to software design and development
for BRAND. Y H A developed and ran benchmarks
to validate the system and wrote the manuscript. M
Rand N S C developed and benchmarked the neural
data simulators. CN, YHA,SRN,M R, and D M
M conducted the experiments with participant T11.
S A and S R N deployed the software and hardware
needed for the T11 experiments. L R H is the sponsor-
investigator of the multi-site clinical trial. DM B, CP,
LEM,SDS, and N A Y supervised and guided the
project. Funding was acquired by CP, SRN, Y H A,
DMB,SDS, and L R H. All authors reviewed and
contributed to the manuscript.

Conflict of interest

The M G H Translational Research Center has clin-
ical research support agreements with Neuralink,
Synchron, Reach Neuro, Axoft, and Precision Neuro,
for which L R H provides consultative input. M G H
is a subcontractor on an NIH SBIR with Paradromics.
C P is a consultant for Synchron and Meta (Reality
Labs). D M B is a consultant for Paradromics. S
D S is an inventor on intellectual property licensed
by Stanford University to Blackrock Neurotech and
Neuralink Corp. These entities did not support this
work, have a role in the study or have any competing
interests related to this work. The remaining authors
declare no competing interests.

ORCID iDs

Yahia H Ali ® https://orcid.org/0000-0001-8618-
3837

Kevin Bodkin ® https://orcid.org/0000-0002-6329-
7353

Mattia Rigotti-Thompson
0001-7298-274X

Nicholas S Card ® https://orcid.org/0000-0002-
6858-268X
Bareesh Bhaduri
4564-2555
Samuel R Nason-Tomaszewski
https://orcid.org/0000-0002-7127-0986

https://orcid.org/0009-

https://orcid.org/0000-0002-

https://doi.org/10.5281/zenodo.10547705
https://doi.org/10.5281/zenodo.10547705
https://orcid.org/0000-0001-8618-3837
https://orcid.org/0000-0001-8618-3837
https://orcid.org/0000-0001-8618-3837
https://orcid.org/0000-0002-6329-7353
https://orcid.org/0000-0002-6329-7353
https://orcid.org/0000-0002-6329-7353
https://orcid.org/0009-0001-7298-274X
https://orcid.org/0009-0001-7298-274X
https://orcid.org/0009-0001-7298-274X
https://orcid.org/0000-0002-6858-268X
https://orcid.org/0000-0002-6858-268X
https://orcid.org/0000-0002-6858-268X
https://orcid.org/0000-0002-4564-2555
https://orcid.org/0000-0002-4564-2555
https://orcid.org/0000-0002-4564-2555
https://orcid.org/0000-0002-7127-0986
https://orcid.org/0000-0002-7127-0986

10P Publishing

J. Neural Eng. 21 (2024) 026046

Domenick M Mifsud @ https://orcid.org/0000-
0001-8200-8193

Xianda Hou ® https://orcid.org/0009-0002-2066-
8561

Claire Nicolas ® https://orcid.org/0000-0002-7761-
3943

Shane Allcroft ® https://orcid.org/0000-0002-7903-
5091

Leigh R Hochberg @ https://orcid.org/0000-0003-
0261-2273

Nicholas Au Yong ® https://orcid.org/0000-0002-
7898-7832

Sergey D Stavisky ©® https://orcid.org/0000-0002-
5238-0573

Lee E Miller ® https://orcid.org/0000-0001-8675-
7140

David M Brandman ® https://orcid.org/0000-0003-
3224-7019

Chethan Pandarinath ® https://orcid.org/0000-
0003-1241-1432

References

[1] Hochberg L R et al 2012 Reach and grasp by people with
tetraplegia using a neurally controlled robotic arm Nature
485 7398

[2] Collinger J L, Wodlinger B, Downey] E, Wang W,
Tyler-Kabara E C, Weber D], McMorland A J, Velliste M,
Boninger M L and Schwartz A B 2013 High-performance
neuroprosthetic control by an individual with tetraplegia
Lancet 381 557-64

[3] Pandarinath C et al 2017 High performance communication
by people with paralysis using an intracortical
brain-computer interface eLife 6 ¢18554

[4] Willett F R, Avansino D T, Hochberg L R, Henderson] M
and Shenoy K V 2021 High-performance brain-to-text
communication via handwriting Nature 593 249-54

[5] Ajiboye A B et al 2017 Restoration of reaching and grasping
movements through brain-controlled muscle stimulation in
a person with tetraplegia: a proof-of-concept demonstration
Lancet 389 1821-30

[6] Gilja V et al 2015 Clinical translation of a high-performance
neural prosthesis Nat. Med. 21 1142-5

[7] Cunningham J P, Nuyujukian P, Gilja V, Chestek C A, Ryu S 1

and Shenoy K'V 2011 A closed-loop human simulator for

investigating the role of feedback control in brain-machine

interfaces J. Neurophysiol. 105 1932-49

Shanechi M M, Orsborn A L, Moorman H G, Gowda S,

Dangi S and Carmena] M 2017 Rapid control and feedback

rates enhance neuroprosthetic control Nat. Commun.

813825

Simulink Real-Time—MATLAB 2024 MathWorks (available

at: www.mathworks.com/products/simulink-real-time.html)

(Accessed 22 January 2024)

[10] Patel Y A, George A, Dorval A D, White J A, Christini D J
and Butera R J 2017 Hard real-time closed-loop
electrophysiology with the real-time eXperiment interface
(RTXI) PLoS Comput. Biol. 13 €1005430

[11] Ciliberti D and Kloosterman F 2017 Falcon: a highly flexible
open-source software for closed-loop neuroscience J. Neural
Eng. 14 045004

[12] Mehrotra P, Dasgupta S, Robertson S and Nuyujukian P
2018 An open-source realtime computational platform
(short WIP paper) Proc. 19th ACM SIGPLAN/SIGBED Int.
Conf. on Languages, Compilers, and Tools for Embedded

(8

[9

Y H Ali et al

Systems, in LCTES 2018 (New York, NY, USA) (Association
for Computing Machinery) pp 109-12

[13] Stavisky S D, Kao J C, Nuyujukian P, Ryu S I and Shenoy K V
2015 A high performing brain-machine interface driven by
low-frequency local field potentials alone and together with
spikes J. Neural Eng. 12 036009

[14] Clients Redis (available at: https://redis.io/docs/clients/)
(Accessed 15 September 2022)

[15] realtime:start [Wiki] (available at: https://wiki.
linuxfoundation.org/realtime/start) (Accessed 22 May 2023)

[16] Brandman D M, Cash S S and Hochberg L R 2017 Review:
human intracortical recording and neural decoding for
brain—computer interfaces IEEE Trans. Neural Syst. Rehabil.
Eng. 25 1687-96

[17] Pandarinath C and Bensmaia S J 2022 The science and
engineering behind sensitized brain-controlled bionic hands
Physiol. Rev. 102 551-604

[18] Nason S R et al 2020 A low-power band of neuronal spiking
activity dominated by local single units improves the
performance of brain—machine interfaces Nat. Biomed. Eng.
4973-83

[19] Ye] and Pandarinath C 2021 Representation learning for
neural population activity with neural data transformers
Neurons Behav. Data Anal. Theory 5 1-18

[20] Pandarinath C et al 2018 Inferring single-trial neural
population dynamics using sequential auto-encoders Nat.
Methods 15 10

[21] Davis S and Mermelstein P 1980 Comparison of parametric
representations for monosyllabic word recognition in
continuously spoken sentences IEEE/ACM Trans. Audio
Speech Lang. Process. 28 357—66

[22] Simeral J D, Kim S-P, Black M J, Donoghue J P and
Hochberg L R 2011 Neural control of cursor trajectory and
click by a human with tetraplegia 1000 days after implant of
an intracortical microelectrode array J. Neural Eng. 8 025027

[23] Gilja V et al 2012 A high-performance neural prosthesis
enabled by control algorithm design Nat. Neurosci. 15 12

[24] Taylor D M, Tillery S I H and Schwartz A B 2002 Direct
cortical control of 3D neuroprosthetic devices Science
296 1829-32

[25] Brandman D M et al 2018 Rapid calibration of an
intracortical brain—computer interface for people with
tetraplegia J. Neural Eng. 15 026007

[26] Pei F et al 2021 Neural latents benchmark’21: evaluating

latent variable models of neural population activity Proc.

Neural Inf. Process. Syst. Track Datasets Benchmarks vol

1 (available at: https://datasets-benchmarks-proceedings.

neurips.cc/paper/2021/hash/979d472a84804b

9f647bc185a877a8b5-Abstract-round2.html) (Accessed 9

December 2021)

Lopes G et al 2015 Bonsai: an event-based framework for

processing and controlling data streams Front. Neuroinform.

97

Clisson P, Bertrand-Lalo R, Congedo M, Victor-Thomas G

and Chatel-Goldman J 2019 Timeflux: an open-source

framework for the acquisition and near real-time processing

of signal streams Proc. 8th Graz Brain-Computer Interface

Conf. 2019 (Verlag der Technischen Universitit Graz)

(https://doi.org/10.3217/978-3-85125-682-6-17)

[29] LabGraph 2023 Meta Research (Accessed 27 June 2023)
(available at: https://github.com/facebookresearch/labgraph)

[30] Dold M, Pereira J, Janssen M and Tangermann M 2023
Project dareplane for closed-loop deep brain stimulation
Brain Stimul. Basic Transl. Clin. Res. Neuromodulation
16 319-20

[31] Quigley M et al 2009 ROS: an open-source robot operating
system IEEE Int. Conf. Robot. Autom. Workshop Open Source
Softw.

[32] Simeral J D et al 2021 Home use of a percutaneous wireless
intracortical brain-computer interface by individuals with
tetraplegia IEEE Trans. Biomed. Eng. pp 1-1

[27

[28

12

https://orcid.org/0000-0001-8200-8193
https://orcid.org/0000-0001-8200-8193
https://orcid.org/0000-0001-8200-8193
https://orcid.org/0009-0002-2066-8561
https://orcid.org/0009-0002-2066-8561
https://orcid.org/0009-0002-2066-8561
https://orcid.org/0000-0002-7761-3943
https://orcid.org/0000-0002-7761-3943
https://orcid.org/0000-0002-7761-3943
https://orcid.org/0000-0002-7903-5091
https://orcid.org/0000-0002-7903-5091
https://orcid.org/0000-0002-7903-5091
https://orcid.org/0000-0003-0261-2273
https://orcid.org/0000-0003-0261-2273
https://orcid.org/0000-0003-0261-2273
https://orcid.org/0000-0002-7898-7832
https://orcid.org/0000-0002-7898-7832
https://orcid.org/0000-0002-7898-7832
https://orcid.org/0000-0002-5238-0573
https://orcid.org/0000-0002-5238-0573
https://orcid.org/0000-0002-5238-0573
https://orcid.org/0000-0001-8675-7140
https://orcid.org/0000-0001-8675-7140
https://orcid.org/0000-0001-8675-7140
https://orcid.org/0000-0003-3224-7019
https://orcid.org/0000-0003-3224-7019
https://orcid.org/0000-0003-3224-7019
https://orcid.org/0000-0003-1241-1432
https://orcid.org/0000-0003-1241-1432
https://orcid.org/0000-0003-1241-1432
https://doi.org/10.1038/nature11076
https://doi.org/10.1038/nature11076
https://doi.org/10.1016/S0140-6736(12)61816-9
https://doi.org/10.1016/S0140-6736(12)61816-9
https://doi.org/10.7554/eLife.18554
https://doi.org/10.7554/eLife.18554
https://doi.org/10.1038/s41586-021-03506-2
https://doi.org/10.1038/s41586-021-03506-2
https://doi.org/10.1016/S0140-6736(17)30601-3
https://doi.org/10.1016/S0140-6736(17)30601-3
https://doi.org/10.1038/nm.3953
https://doi.org/10.1038/nm.3953
https://doi.org/10.1152/jn.00503.2010
https://doi.org/10.1152/jn.00503.2010
https://doi.org/10.1038/ncomms13825
https://doi.org/10.1038/ncomms13825
www.mathworks.com/products/simulink-real-time.html
https://doi.org/10.1371/journal.pcbi.1005430
https://doi.org/10.1371/journal.pcbi.1005430
https://doi.org/10.1088/1741-2552/aa7526
https://doi.org/10.1088/1741-2552/aa7526
https://doi.org/10.1145/3211332.3211344
https://doi.org/10.1088/1741-2560/12/3/036009
https://doi.org/10.1088/1741-2560/12/3/036009
https://redis.io/docs/clients/
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://doi.org/10.1109/TNSRE.2017.2677443
https://doi.org/10.1109/TNSRE.2017.2677443
https://doi.org/10.1152/physrev.00034.2020
https://doi.org/10.1152/physrev.00034.2020
https://doi.org/10.1038/s41551-020-0591-0
https://doi.org/10.1038/s41551-020-0591-0
https://doi.org/10.51628/001c.27358
https://doi.org/10.51628/001c.27358
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1088/1741-2560/8/2/025027
https://doi.org/10.1088/1741-2560/8/2/025027
https://doi.org/10.1038/nn.3265
https://doi.org/10.1038/nn.3265
https://doi.org/10.1126/science.1070291
https://doi.org/10.1126/science.1070291
https://doi.org/10.1088/1741-2552/aa9ee7
https://doi.org/10.1088/1741-2552/aa9ee7
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/979d472a84804b9f647bc185a877a8b5-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/979d472a84804b9f647bc185a877a8b5-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/979d472a84804b9f647bc185a877a8b5-Abstract-round2.html
https://doi.org/10.3389/fninf.2015.00007
https://doi.org/10.3389/fninf.2015.00007
https://doi.org/10.3217/978-3-85125-682-6-17
https://github.com/facebookresearch/labgraph
https://doi.org/10.1016/j.brs.2023.01.591
https://doi.org/10.1016/j.brs.2023.01.591
https://doi.org/10.1109/TBME.2021.3069119

10P Publishing

J. Neural Eng. 21 (2024) 026046

[33] Willett F R e al 2023 A high-performance speech
neuroprosthesis bioRxiv Preprint (https://doi.org/
10.1101/2023.01.21.524489) (Accessed 25 April 2023)

[34] Moses D A et al 2021 Neuroprosthesis for decoding speech in
a paralyzed person with anarthria New Engl. J. Med.

385 217-27

[35] Wairagkar M, Hochberg L R, Brandman D M and
Stavisky S D 2023 Synthesizing speech by decoding
intracortical neural activity from dorsal motor cortex 2023
11th Int. IEEE/EMBS Conf. on Neural Engineering (NER)
pp 1-4

[36] Keshtkaran M R et al 2021 A large-scale neural network
training framework for generalized estimation of single-trial
population dynamics p 2021.01.13.426570

Y H Ali et al

[37] Sani O G, Abbaspourazad H, Wong Y T, Pesaran B and
Shanechi M M 2021 Modeling behaviorally relevant neural
dynamics enabled by preferential subspace identification
Nat. Neurosci. 24 1

[38] Santaniello S, Burns S P, Golby A J, Singer] M,

Anderson W S and Sarma S V 2011 Quickest detection of
drug-resistant seizures: an optimal control approach Epilepsy
Behav. 22 S49-S60

[39] ZeroMQ 2023 ZeroMQ (available at: https://zeromq.org/)
(Accessed 28 July 2023)

[40] Schalk G, McFarland D J, Hinterberger T, Birbaumer N and
Wolpaw] R 2004 BCI2000: a general-purpose
brain-computer interface (BCI) system IEEE Trans. Biomed
Eng. 51 103443

13

https://doi.org/10.1101/2023.01.21.524489
https://doi.org/10.1101/2023.01.21.524489
https://doi.org/10.1056/NEJMoa2027540
https://doi.org/10.1056/NEJMoa2027540
https://doi.org/10.1109/NER52421.2023.10123880
https://doi.org/10.1101/2021.01.13.426570
https://doi.org/10.1038/s41593-020-00733-0
https://doi.org/10.1038/s41593-020-00733-0
https://doi.org/10.1016/j.yebeh.2011.08.041
https://doi.org/10.1016/j.yebeh.2011.08.041
https://zeromq.org/
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.1109/TBME.2004.827072

	BRAND: a platform for closed-loop experiments with deep network models
	1. Introduction
	2. Methods
	2.1. System architecture
	2.2. Validation
	2.2.1. Communication latency
	2.2.2. iBCI control
	2.2.3. Simulation

	2.3. Closed loop validation
	2.3.1. Clinical trial participant
	2.3.2. Cursor control task
	2.3.3. Signal processing

	3. Results
	3.1. Inter-process communication latency
	3.2. iBCI control
	3.3. Neural simulation

	4. Discussion
	4.1. Open-source software
	4.2. Comparison to existing systems
	4.3. Distributed computing
	4.4. Data privacy and security
	4.5. Future directions

	References

