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Abstract
Objective. Current intracortical brain-computer interfaces (iBCIs) rely predominantly on threshold
crossings (‘spikes’) for decoding neural activity into a control signal for an external device. Spiking
data can yield high accuracy online control during complex behaviors; however, its dependence on
high-sampling-rate data collection can pose challenges. An alternative signal for iBCI decoding is
the local field potential (LFP), a continuous-valued signal that can be acquired simultaneously with
spiking activity. However, LFPs are seldom used alone for online iBCI control as their decoding
performance has yet to achieve parity with spikes. Approach.Here, we present a strategy to improve
the performance of LFP-based decoders by first training a neural dynamics model to use LFPs to
reconstruct the firing rates underlying spiking data, and then decoding from the estimated rates.
We test these models on previously-collected macaque data during center-out and random-target
reaching tasks as well as data collected from a human iBCI participant during attempted speech.
Main results. In all cases, training models from LFPs enables firing rate reconstruction with
accuracy comparable to spiking-based dynamics models. In addition, LFP-based dynamics models
enable decoding performance exceeding that of LFPs alone and approaching that of spiking-based
models. In all applications except speech, LFP-based dynamics models also facilitate decoding
accuracy exceeding that of direct decoding from spikes. Significance. Because LFP-based dynamics
models operate on lower bandwidth and with lower sampling rate than spiking models, our
findings indicate that iBCI devices can be designed to operate with lower power requirements than
devices dependent on recorded spiking activity, without sacrificing high-accuracy decoding.

1. Introduction

Intracortical brain-computer interfaces (iBCIs)
can restore functional capabilities for people with
paralysis by monitoring cortical neural activity and

mapping it to an external variable [1, 2], such
as intended cursor movements, actuations of a
robotic effector, handwritten characters, spoken
words, and even muscle contractions [3–19]. These
devices typically use implanted electrodes to measure
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spiking activity, which in this work refers to unsor-
ted threshold crossing events consisting primarily of
action potentials. Spikes are the predominant sig-
nal used to train iBCI decoding algorithms to trans-
late neural activity into control signals for external
effectors [1]. Recent advances in neural interfaces
have raised the prospect of implantable wireless iBCI
devices [20–22], which promise to offer further bene-
fits to users by making devices untethered, safer, and
more portable.

A key consideration in designing wireless iBCIs
is the power required for data collection and trans-
mission, as high power requirements necessitate lar-
ger batteries to ensure sufficient battery life to last
between recharges or replacements. While advant-
ageous for decoding performance, spikes are at a dis-
advantage in terms of power consumption. To reliably
identify spikes, voltages are acquired at high sampling
rates (e.g. 30 kHz). While spiking activity can be
binned and digitized to lower power requirements
for wireless data transmission, the high sampling rate
and bandwidth necessitate power-hungry amplifiers
and analog-to-digital converters [23]. Recent stud-
ies have demonstrated that spikes can be extracted
from lower bandwidth signals [20, 24], but the band-
width must remain sufficiently high to avoid inaccur-
ate firing rate estimates or degradations in decoding
performance [23].

Reducing the necessary signal bandwidth can
allow more flexibility in engineering options, as
devices that use less power and require smaller
implanted batteries raise fewer safety concerns with
regards to the heating of biological tissues and lessen
the demand on users imposed by frequent battery
replacement surgeries or recharging. Continuous fea-
tures such as spike band power (SBP; 300–1000 Hz)
offer a promising avenue for lowering front-end
power consumption of iBCI devices by restricting
the bandwidth of the signal of interest, relative to
spiking activity [23]. However, decreasing the signal
and recording bandwidths further necessitates look-
ing at even lower frequency bands, some of which
have been shown to have strong relationships to both
spikes andmotor behavior [25–33]. Of interest in this
study were signals containing frequencies less than
or equal to 450 Hz, which we refer to as local field
potentials (LFPs) due to their predominantly low fre-
quency content (despite some overlap with the spike
band). LFPs have successfully been used to decode
behavior in iBCIs, both on their own and to supple-
ment spikes [3, 5, 27, 28, 34–36]. In addition, though
here we focus on decoding within a single day, LFPs
are often cited for having greater longevity through-
out recording implant lifetime and improved decod-
ing stability over spikes [34, 36–38]. Yet, when spikes
are readily available, LFPs are not often used alone
in iBCIs, as no studies to date have shown that LFPs
can achieve performance on par with spikes-based
decoders.

Neural population dynamics modeling provides
a potential avenue for achieving high-performing
LFP-based iBCI decoders. Dynamics models aim to
uncover temporal patterns underlying the activity of
populations of neurons [39–47]. In doing so, mod-
els typically yield a low-dimensional latent represent-
ation of the neural activity (‘factors’) and denoised
neural firing rates. These model outputs often have a
close correspondence to behavior, which can lead to
improved behavioral decoding performance—a pri-
ority for next generation iBCIs [40, 42, 45].

While both LFPs and spikes have been previously
modeled as dynamical systems [29, 48, 49], we pro-
pose a novel paradigm for LFP-based dynamics mod-
els where LFP power is used as input, and the model’s
objective is to reconstruct the firing rates underly-
ing spiking activity. In this paradigm, training the
model requires LFPs and spikes to be collected sim-
ultaneously. However, after training, only LFPs are
required to perform model inference and obtain fir-
ing rate estimations on new timepoints. Thus after
an initial model training dataset is collected, further
use of the model relies only on the LFP, a low-power
signal.

Here we demonstrate that LFP-based dynamics
models, as a pre-decoding step for iBCIs, can lower
power requirements while maintaining the decod-
ing performance of high-power, spikes-based coun-
terparts. We begin by calculating the power require-
ments of various wireless iBCI circuit components for
each signal modality, and find that recording LFPs in
place of spikes can reduce power consumption by an
order of magnitude or more. We then demonstrate
model performance on three datasets. First, we show
that for a variety of frequency bands and data resolu-
tions, LFP-based dynamics models trained on amon-
key center-out dataset yield accurately-reconstructed
firing rates and high-performance decoding compar-
able to that of spikes-based dynamics models. Next,
we show that on a less structuredmonkey random tar-
get reaching task, LFP-based dynamics models main-
tain their ability to accurately reconstruct firing rates
and decode behavior. Finally, we investigate a human
iBCI speech task and find that LFP-based dynam-
ics models performed comparably to spikes-based
dynamics models for phoneme decoding.

In all, we demonstrate that LFP-based dynamics
models produce outputs that can be used to train
decoders performs better than LFP power alone and
comparably to spikes-based dynamics models. This
decoding advantage is accompanied by a decrease in
required power consumption to collect model input
data post-training. Lower power consumption bene-
fits the development of wireless iBCIs by enabling
longer battery life or the transmission of more
channels. Further, given the previously-demonstrated
longevity of LFP signals, improving the decoding per-
formance achievable with LFPs alone helps extend the
functional lifetime of iBCI implants as spiking data
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quality degrades. Overall, these results demonstrate
that models of neural population dynamics can sub-
stantially improve the potential of LFPs to be used in
real-world iBCIs.

2. Methods andmaterials

2.1. Nonhuman primate data collection
We analyzed previously-collected primate data from
two reaching tasks [28, 36, 50]. A rhesus macaque
was implanted with a 96-channel microelectrode
array (Blackrock Neurotech, Inc.) in the arm area of
primary motor cortex (M1). The monkey performed
each reaching task with the arm contralateral to the
array. We collected broadband data from each elec-
trode at 30 kHz using a 128-channel acquisition sys-
tem (Cerebus, Blackrock Neurotech, Inc.). To extract
spikes, we high pass filtered the broadband data (1st
order causal filter, 300 Hz cutoff) and thresholded it
using a thresholdmanually set for each channel (aver-
age threshold = 5.2 standard deviations above mean
waveform potential). To extract LFPs, we first band-
pass filtered the broadband data from 0.3 to 500 Hz
(1st order causal filter), then resampled the signal at
2 kHz, and finally notch filtered it at harmonics of
60 Hz for powerline noise removal.

The first task we analyzed was an eight-target
center-out reaching task. On each trial, the monkey
began by holding at the center of a 10 cm-radius circle
of targets for 0.5–0.6 s. Then, one of eight 2 cm square
targets spaced at 45◦ intervals around the circle was
illuminated. The monkey had to reach the outer tar-
get within 1.5 s and hold for a random time between
0.2–0.4 s to obtain a liquid reward. The second task
was a random target reaching task. On each trial, the
monkey had to acquire a series of 6 randomly posi-
tioned targets appearing one-at-a-time, holding each
for 0.1 s, to obtain the reward. The targets spanned
the majority of the 20-by-20 cm workspace.

2.2. Human subject data collection
Participant T16 is a participant in the BrainGate2
clinical trial (ClinicalTrials.gov Identifier:
NCT00912041). This pilot clinical trial was approved
under an investigational device exemption (IDE)
by the US Food and Drug Administration (IDE
#G090003; CAUTION: Investigational device.
Limited by federal law to investigational use.).
Permission was also granted by the Mass General
Brigham IRB (protocol #2009P000505) and the
Emory University IRB (protocol #00003070). T16
is a right-handed woman, 52 years of age at the
time of the study, with tetraplegia and dysarthria
due to a pontine stroke that occurred approxim-
ately 19 years prior to study enrollment. We placed
four 64-channel intracortical microelectrode arrays
(Blackrock Microsystems, Salt Lake City, UT; 1.5 mm

electrode length) in her left precentral gyrus. In this
study, we analyze data collected on trial day 69 from
only one of these arrays, which was located in the
speech-related ventral precentral gyrus (6v). We
recorded and processed broadband data at 30 kHz
using the Backend for Realtime Asynchronous Neural
Decoding (BRAND) platform [51]. To extract the
spiking data, we first re-referenced the data using lin-
ear regression referencing (LRR) [52] with respect
to data collected immediately before the period of
interest. We then bandpass filtered from 250 to
5000 Hz (4th order Butterworth filter) and finally
identified threshold crossings with a threshold of
−4.5RMS. We extracted LFPs by processing the
broadband data to be consistent with the nonhu-
man primate data as described above: we first low
pass filtered the data with a 1000 Hz cutoff (5th
order Butterworth filter), downsampled the signal
to a 2 kHz sampling rate, and notch filtered at har-
monics of 60 Hz to remove powerline noise.

We asked participant T16 to perform a cued
speech task in which she vocalized a word presented
to her on a screen [53], similar to previous speech-
related tasks [17, 19]. The word bank was compiled
from the 50 word vocabulary introduced by Moses
et al [14]. At the beginning of each trial, a red square
appeared on the screen directly below a single word.
After a delay period of 1500 ms, the square turned
green, cueing the participant to vocalize the word to
the best of her ability. After it was clear the parti-
cipant was done speaking, an experimenter ended the
trial. There was a 1000 ms interval before the next
trial began. All research sessions were performed at
the participant’s place of residence.

2.3. Data preprocessing
2.3.1. LFPs
Before analysis, we further preprocessed raw LFPs by
identifying and removing disconnected or overly act-
ive channels, computing LFP power, and causally nor-
malizing the resulting signals. For some analyses, we
also applied a Gaussian kernel to smooth the signal
(standard deviation= 30 ms for monkey data, 50 ms
for T16 data).

To compute LFP power, we first took the raw
2 kHz LFP signals and computed a short-time Fourier
transform (STFT) using a frequency resolution of
5 Hz (except for the 0–8 Hz band, for which we used
2 Hz) and shifting the window by 10% of the win-
dow length at each step (for the 0–8 Hz band, 4%).
We then identified the magnitudes in the frequency
bands of interest and computed power by summing
their values squared into 20 ms bins. For determ-
ining channels to remove, we took these power val-
ues and computed the mean within each channel. We
excluded channels that had mean power in the fre-
quency band of interest that was less than 50% of the
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median of the per-channel means (assumed discon-
nected) [54] or greater than or equal to twice the 99th
quantile of the per-channel means (overly active). For
modeling and other decoding-based analyses, we then
computed the log of these power values. We causally
normalized the power by z-scoring it in each timestep
using means and standard deviations computed from
a 3 min rolling window.

2.3.2. Spikes
For the random target dataset, we first removed coin-
cident spikes by zeroing the value at any time step
at which a spike occurred on more than 30% of
the channels. For all datasets, we also removed any
channels involved in correlations with other channels
higher than 0.2 when computed in 1 ms bins prior to
modeling; this prevents model overfitting to correl-
ated noise events across channels. Then,we resampled
spikes into 20 ms bins by computing the cumulat-
ive sum of spike counts in each 20 ms time window.
For some analyses, we also smoothed the spikes by
convolving with a Gaussian kernel (standard devi-
ation= 30 ms for monkey data, 50 ms for T16 data).

2.3.3. Behavior
We analyzed behavior and performed neural decod-
ing by looking at windows around amovement align-
ment time. For both monkey reaching datasets, we
computed an alignment time as the time at which the
speed in the window starting 250 ms after trial start
time crosses the threshold of 70% of the peak speed
in each trial. We extracted the window of data 250 ms
before to 500 ms after this alignment point. To avoid
analyzing trials that may have had corrective move-
ments or multiple speed peaks, we rejected any trial
for which the first crossing computed from the start
of the trial and the last crossing computed from the
end of the trial did not match.

For the T16 data, we computed the envelope
of microphone data collected during the session by
mean-centering the data, high-pass filtering with a
cutoff of 65Hz, rectifying the signal, low-pass filtering
with a cutoff of 10 Hz, and then downsampling the
resulting envelope to 50 Hz to match the resolution
of the neural data. To determine speech onset points,
we adapted a custom algorithm to be applied to this
envelope. Looking at the region between the go cue
and trial stop time, we identified peaks in the differen-
tiated envelope (positive peaks) and its inverse (neg-
ative peaks) to identify increases and decreases in the
signal.We selected the first positive peak as the speech
onset and the last negative peak as the speech off-
set. In order to reduce sensitivity to outliers or noise,
we set a minimum threshold for peak magnitude of
3.5 to ensure that peak detection only captured large-
amplitude changes in the differentiated microphone
envelope.

2.4. Neural dynamics modeling
The neural dynamics model used in this work is lat-
ent factor analysis via dynamical systems (LFADS)
[39, 40]. In short, LFADS models temporal patterns
underlying neural activity using a series of recur-
rent neural networks. The input to the model is a
neural signal s(t). The Generator RNN models the
generic dynamical system as ẋ(t) = f(x(t) ,u(t)). A
Controller RNN models inputs to the dynamical sys-
tem u(t). Encoder RNNsmodel the initial conditions
x(0) and u(0). The objective of the model is to best
reconstruct the rates ŝ(t) underlying the neural sig-
nal using a Poisson negative log likelihood (NLL) loss
computed based on s(t).

In the original model (termed ‘Spikes LFADS’ in
this paper), s(t) is comprised of binned spiking data,
and ŝ(t) is an estimate of the denoised firing rates
learned by computing the Poisson NLL between ŝ(t)
and s(t). In our work, we replaced the input data s(t)
with LFP power p(t) (supp. figure 1). The input to the
model is now p(t), but the model’s objective is still to
estimate ŝ(t) by computing the Poisson NLL between
ŝ(t) and s(t).

All neural data is modeled with LFADS in an
unsupervised manner with respect to trial structure.
The continuous data is divided into segments [55]
as follows: 1000 ms windows with 200 ms overlap
for center-out reaching datasets and 1000 ms win-
dows with 350 ms overlap for random target reach-
ing datasets and speech datasets. We trained LFADS
models with fixed architecture parameters (supp.
table 1) chosen based on previous work modeling
monkey movement datasets [56] and adjusted based
on empirical model performance. We optimized the
hyperparameters of the LFP LFADS models using
grid searches for both monkey datasets in which we
selected hyperparameters based on model firing rate
reconstruction (negative log likelihood) and post-hoc
behavioral decoding performance on the modeled
datasets (supp. tables 2 and 3). For these grid searches,
we selected hyperparameters jointly over all five tested
sessions for the monkey center-out task and for only
one session for the monkey random target task. Due
to task and decoder complexity, we optimized hyper-
parameters using onlyAutoLFADS [41] for the speech
dataset. We also optimized the hyperparameters of all
Spikes LFADSmodels using AutoLFADS. In addition,
to aid in reducing overfitting to correlations between
channels in the binned spiking data, we trained Spikes
LFADS models with a data augmentation that ran-
domlymoved spikes up to 2 bins forward or backward
in a different configuration on each training step [56].

After training, models trained on monkey data-
sets used a causal inference procedure to obtain res-
ulting LFADS factors and denoised firing rates [51,
56]. The models performed inference using a sliding
window of observed data; at each time step, one new
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bin of input data was added to the window, and the
remaining time steps consisted of previously observed
data. This resulted in one new bin of model output.
In addition, rather than sampling from the posterior
distribution many times and averaging, we used the
means of the posterior distributions. These modific-
ations help to best simulate an online iBCI scenario
in which minimal latency is desired. Models trained
on the speech dataset used standard acausal infer-
ence and posterior sampling as the decoder requires a
window of data to operate, making millisecond-scale
latencies less of a concern.

2.5. Quantification of firing rate reconstruction
To quantify how well a model’s firing rates repres-
ented the empirical firing rates, we computed the
peri-stimulus time histogram (PSTH) R2 between the
model’s inferred firing rates and the smoothed spik-
ing data (30 ms Gaussian) [57]. This value is com-
puted using the condition averages in the window
250 ms before to 500 ms after the computed move-
ment alignment time. We then concatenate each con-
dition average along the time axis to compute R2 for
each channel and report the uniform averagedR2 over
channels.

2.6. Power consumption analysis
We assumed the wireless iBCI recording device
components that may differ in power consumption
between LFP and spike data acquisition include ana-
log amplifiers, analog-to-digital converters, feature
extractors, and wireless transmitters.

We calculated the power of the amplifier using the
noise efficiency factor (NEF) formula [58]:

Pamp = Vsource

(
NEF

VRMS

)2
π ·UT · 4kT ·BW

2

where the voltage source Vsource was 3.3 V, the NEF
was 4.0, the VRMS was 2 µV, the thermal voltage
UT was 26.7 mV, the Boltzmann constant k is
1.38 × 10−23, the temperature was 310 K, and BW
was the signal bandwidth [23].

We calculated the power of the analog-to-digital
converter (ADC) by solving the Schreier Figure of
Merit (FoMs) formula [59]:

PADC =
BW

10
FoMs-SNDR

10

where the FoMs was 185 dB [60], SNDR was 96 dB,
and BW was the sampling bandwidth (half of the
sampling rate) [23].

We did not estimate power consumption for fea-
ture extraction because it has previously been shown
that their consumption is orders of magnitude lower
than that of the analog front-end [23]. For the data
transmitter, we closely matched the transmission rate
of the current state-of-the-art wireless iBCI record-
ing device, as transmission rate is the driving factor

behind transmitter power consumption [20, 24]. By
matching transmission rate, data transmission power
is matched between our proposed LFP and spikes cir-
cuits, allowing us to focus on potential power savings
from the analog front-end when recording LFPs in
place of spikes.

To mimic the potential data compression rates
for spikes counted in 20 ms bins, we quantized the
LFP power signal within the 150–450 Hz band for
each session by first min-max scaling each channel
of data with respect to the entire session (approxim-
ately 15 min of data) so that it falls within the range
of 0–2b, where b is the number of bits in the resolu-
tion of interest, and flooring the resulting float val-
ues to integers. This simulates LFP data collection
and compressed transmission from a wireless iBCI
recording device. The resulting signal was used in two
analyses. First, to assess whether data compression
rates affect how well LFP power can predict behavior,
we smoothed the quantized LFP power (Gaussian w/
standard deviation 30 ms) and trained a decoder.
Later, to determine whether data compression rates
had an impact onmodeling performance, we used the
quantized LFP power (unsmoothed) to train a neural
dynamicsmodel, and trained a decoder on the output
rates.

We further assessed model performance at differ-
ent LFP frequency bands by simulating a lower band-
width signal. Here we considered the frequency bands
150–450 Hz, 100–200 Hz, 50–100 Hz, 25–50 Hz,
and 0–8 Hz. We downsampled the raw LFP signal
to the Nyquist frequency of the upper bound of the
frequency range of interest (except for the 0–8 Hz
band, for which we downsampled to 50 Hz, the low-
est sampling rate to maintain our spiking bin size
of 20 ms). Then, we computed LFP power and used
the resulting features to performmodel inference and
decoding.

2.7. Neural decoding
For both nonhuman primate motor datasets, we
applied a Wiener filter decoder with 4 time bins of
history and L2 regularization of the form:

W =
(
XTX + RTR

)−1
XTy

where W is a matrix of filter coefficients, X repres-
ents the predictor neural data with history and bias,
and y represents the output behavioral data. R repres-
ents a diagonalmatrix with the L2 regularization con-
stant filling the diagonal. The bias term was not reg-
ularized and therefore the diagonal entry of R was set
to zero. To determine the optimal L2 value, we swept
over 20 possible values spaced on a log scale (cen-
ter out: 100-1000, random walk: 0.1-1000). We com-
puted decoder weights using 10-fold cross-validation
and reported the resultingR2 on a held-out validation
set. The neural data we used to predict behavior was
either a smoothed empirical signal (LFPs or spikes) or
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the LFADS outputs (latent factors or rates). To com-
pute decoding accuracy, we used variance-weighted
R2, defined as:

R2 (y, ŷ) = 1−
∑D

d=1

∑N
i=1(ŷi,d − yi,d)

2∑D
d=1

∑N
i=1(yi,d − ȳd)

2 .

For the speech task, we used the recurrent neural
network decoder described in Willett et al [19]. In
brief, we passed preprocessed neural data through a
linear layer, then into stacked gated recurrent units
(GRU) RNNs, and finally into an output layer to pro-
duce phoneme predictions [17, 19]. We optimized
model weights using connectionist temporal classific-
ation (CTC) loss, whose objective is to identify both
when a new phoneme occurs and what the identity of
that phoneme is. Each word was parsed into phon-
emes using the g2pE Python package [61], which
provides labels in ARPAbet notation [62]. For each
neural signal modality, we selected model architec-
ture and hyperparameters by performing a random
search of 200 decoder models. The neural data used
to predict phonemes was either the smoothed raw
signal (LFPs or spikes) or the LFADS output rates.
We quantified decoding performance using the phon-
eme error rate (PER), defined as the edit distance
of the decoded sequence (the number of substitu-
tions, insertions, or deletions required to change the
decoded sequence into the correct sequence) divided
by the number of phonemes in the true sequence. In
order to ensure model performance was consistent,
we trained five decoders with different random seeds,
using the same hyperparameters from the random
search, and reported the mean and standard devi-
ation across these models. To ensure that perform-
ance quantification focused on information within
the neural signals themselves, we did not use a lan-
guage model to perform error correction after phon-
eme decoding, in contrast to the original use case
[19].

3. Results

3.1. LFPs require lower power consumption than
spikes in a wireless iBCI circuit
We first aimed to assess the theoretical magnitude of
differences in power consumption between LFP- and
spikes-based wireless iBCIs (figure 1(a)). Beginning
with the amplifier, whose power requirements
depend on the signal bandwidth, we computed the
power consumed per channel of recorded neural
data for a variety of frequency bands used to extract
either spikes or LFPs (figure 1(b); see section 2). We
estimated the frequency range of 5 Hz–10 kHz as
a standard range for extracting spikes from high-
bandwidth data; the amplifier in this range would
consume 9.5× 10−2 mW per channel of neural data.
However, spikes can also be extracted with adequate

accuracy from lower bandwidth signals, such as 500–
3000 Hz [24]. In this frequency range, the amplifier
would consume 2.4× 10−2mWper channel of neural
data, only 25% of the power required for the high-
bandwidth signal.

In this work, we largely analyzed LFP signals
containing frequencies 0–1000 Hz, which offer fur-
ther power benefits, requiring only 9.5 × 10−3 mW
per channel. Recent work has also proposed SBP
[23] as a low power signal, which would require
6.6 × 10−3 mW per channel. Better yet, our results
largely used LFP power in the high-frequency band of
150–450 Hz; with further circuit optimizations, amp-
lifier power consumption to collect a signal in this
band would use only 2.8 × 10−3 mW of power per
channel (12% of the required per-channel power of
low-bandwidth spikes and 42% of the required per-
channel power of SBP). Lower bandwidth LFP signals
(100–200 Hz, 50–100 Hz, 25–50 Hz, 0–25 Hz), whose
advantages may differ based on the decoding applica-
tion, may reduce amplifier power consumption to as
low as 2.4× 10−4 mW per channel.

We next evaluated the power required by the
analog-to-digital converter (ADC), which depends
on the sampling bandwidth of the signal (figure 1(c)).
Again, we found that high-bandwidth spikes would
require themost power per channel (1.3× 10−2mW)
followed by low-bandwidth spikes (3.8× 10−3 mW).
The LFP signal recorded at 2 kHz would provide a
significant advantage, necessitating 1.3 × 10−3 mW.
This value also holds for SBP as it requires collec-
tion at the same sampling rate and therefore has the
same sampling bandwidth. Lower bandwidth signals
recorded at their lower Nyquist sampling rates may
even further lower ADC power requirements, with
150–450 Hz requiring only 5.7 × 10−4 mW (15% of
that required for low-bandwidth spikes) and the low-
est sampling bandwidth of 0–25 Hz requiring only
3.1× 10−5 mW.

Moving through the circuit, LFPs would unques-
tionably reduce the amplifier and ADC power needed
to acquire neural signals. The feature extraction step,
which involves computing signal power or extracting
threshold crossings and binning to the desired width,
consumes a negligible amount of power relative to the
analog front-end [23, 63]. We next investigated the
transmission step, which wirelessly sends the neural
data to an external computer for further processing
and decoding.

A continuous-valued signal such as LFP, trans-
mitted wirelessly at high precision, would require
more transmission power than a discrete signal. To
assess whether one couldmaintain high-performance
decoding while transmitting low precision LFP sig-
nals, we analyzed previously-collected data from a
monkey center-out reaching dataset. We first quant-
ized the LFP power to different resolutions that might
be used for data transmission (4-bit, 8-bit, 16-bit, and
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Figure 1. Schematic of wireless iBCI circuit and power advantages conferred by LFPs. (a) Schematic of circuit components in
wireless iBCI. Neural activity is processed through an amplifier, analog-to-digital converter (ADC), feature extraction pipeline,
and finally wirelessly transmitted to a computer where any further preprocessing, modeling, and decoding can take place. (b)
Power consumed by the amplifier per channel of neural activity for different frequency bands. Those considered include
high-bandwidth spikes (5–10000 Hz), low bandwidth spikes (500–3000 Hz), the raw LFPs used in this work (0–1000 Hz), SBP
(300-1000 Hz), the band of LFP power used for dynamics modeling in this work (150–450 Hz), and lower LFP bands
(100–200 Hz, 50-100 Hz, 25–50 Hz, 0–25 Hz). (c) Power consumed by the ADC per channel of neural activity for the same
frequency bands shown in (b). (d) Decoding of LFP power in the 150–450 Hz band when represented at 4-bit, 8-bit, 16-bit, and
64-bit depth. (e) Components of neural activity required for training and performing inference with the proposed LFP-based
dynamics model.

64-bit; supp. figure 2). We then smoothed the res-
ulting signal and predicted cursor velocity using a
Wiener filter, and we found that decoding accuracy
remained steady at all signal resolutions (figure 1(d)).
As 4 bits per sample per channel was sufficient to pre-
serve decoding,we estimated the transmission rate for
1024 channels for varying bin sizes and found it to
range from 136.53 Kbps (30 ms bins) to 204.8 Kbps
(20ms bins). This is consistent with the current state-
of-the-art wireless spikes-based iBCI, which operates
at 163.84 Kbps to transmit spiking data from 1024
channels [20].

After wireless transmission of the neural data,
further preprocessing as well as model and decoder
training and inference steps would take place on
an external machine with sufficient computational
resources. Our proposed dynamics model uses LFP
power to reconstruct spikes. Therefore, for initial
model training, both LFP power and spikes would
be required (figure 1(e)). This initial training dataset
may be collected using a wired transmitter or with
access to a high-power source such that power con-
cerns are not at the forefront. After training, model
inference only requires LFP power to yield estim-
ates of firing rates that can be used for decoding.
During this phase, we estimate significant power
consumption advantages at the front-end using the
amplifier and ADC and power consumption consist-
ent with spikes-based devices for wireless transmis-
sion, saving at least 103.86 µW per channel (96.8%)
compared to high-bandwidth spikes, 24.05 µW
per channel (87.6%) compared to low-bandwidth
spikes, and 4.48 µW per channel (56.8%) compared
to SBP.

3.2. LFP-based dynamics models accurately
reconstruct spikes and enable power reduction
Wemodeled dynamics using latent factor analysis via
dynamical systems (LFADS; see section 2.4). Briefly,
LFADS approximates the dynamical system underly-
ing a neural population using a series of recurrent
neural networks (RNNs). In standard Spikes LFADS,
the model input is observed spiking activity, and
its objective is to minimize a lower bound on the
likelihood of the observed spiking activity given the
instantaneous firing rates it has estimated to under-
lie each channel of neural activity. We modified this
scheme for LFP LFADS such that the model input is
now the LFP power in one or more frequency bands,
but the objective is still computed based on the like-
lihood of the spiking activity given estimated firing
rates.

We began by testing the performance of LFP-
based dynamicsmodels by applying them to themon-
key center-out reaching task (figure 2(a)). We com-
pared the denoised rates from the LFP LFADS model
to those of a standard Spikes LFADS model and to
the empirical firing rates estimated by smoothing the
spikes with a Gaussian kernel. We found that des-
pite the difference in input signal, LFP LFADS mod-
els reconstructed firing rates in a qualitatively sim-
ilar manner to Spikes LFADS models (figure 2(b)),
as evidenced by their peri-stimulus time histograms
(PSTHs). Further, both models’ firing rate estimates
were very similar to the empirical Spikes PSTHs, with
PSTH R2 values of 0.79 for Spikes LFADS and 0.85 for
LFP LFADS.

To quantify the amount of behaviorally-relevant
information captured by our models, we assessed
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Figure 2. LFP-based dynamics models reconstruct firing rates and enable high-accuracy behavioral decoding in a monkey
center-out reaching task. (a) Schematic of center-out reaching task. (b) Example PSTHs for three example channels from a single
session for smoothed LFP power, smoothed spikes, Spikes LFADS rates, and LFP LFADS rates. Each color is a different reach
direction, with solid lines indicating the trial average of neural activity for a given condition 250 ms before to 500 ms after the
computed movement alignment time and shaded regions representing the standard error of the mean. (c) Velocity decoding
performance (R2) for LFP LFADS compared to empirical LFP power (top left), Spikes LFADS (top right), smoothed spikes
(bottom left), and smoothed SBP (bottom right). Each point represents the R2 value for a model trained on one session of data;
five sessions were evaluated in total. Dashed black line indicates unity. LFP power features from the 150–450 Hz band. (d) Left:
Measured single trial reach trajectories, colored by target location for a single session. Right: reach position trajectories integrated
from the decoded reach velocity when a decoder is trained on each of the four neural signal modalities. Data and R2 shown for the
same single session as in (b). LFP power in the band 150–450 Hz, 64-bit resolution. (e) Decoding performance of LFP-based
dynamics models when using input features from different frequency bands of LFPs to reconstruct spikes. (f) Decoding
performance of LFP-based dynamics models when using LFP power features (150–450 Hz) computed at different resolutions.

the decoding performance from each neural sig-
nal modality using a Wiener filter trained to pre-
dict cursor velocity. We used five sessions of neural
data recorded on different days. On each session, we
trained an LFP LFADS model using LFP power in
the 150–450 Hz band, and then trained a decoder
from the LFADS rates to the cursor velocity. We
compared the resulting decoding accuracies to those
obtained by training decoders on various empir-
ical neural signals, without any dynamics modeling.
We first compared the decoding performance (R2)
to that of training a decoder on the smoothed LFP
Power from the same frequency band. We found that
decoding from LFP LFADS rates (mean R2 = 0.83)
exceeded the performance of decoding from empir-
ical LFP Power (mean R2 = 0.68) for all sessions
(p = 6.6 × 10−5 in one-sided t-test) (figure 2(c), top

left). We further tested whether LFP LFADS decod-
ing performance continued to exceed that of sig-
nals from a higher frequency band more often used
for iBCI decoding, SBP (figure 2(c), bottom right).
LFP LFADS exceeded the performance of decoding
from smoothed SBP for all five tested datasets (mean
R2 = 0.71, p = 1.26 × 10−4 in one-sided t-test),
demonstrating that LFP LFADS can provide both
power and decoding gains. Additionally, we ensured
that LFP LFADS provided an advantage over tra-
ditional spikes decoding (figure 2(c), bottom left),
where it again showed significantly higher perform-
ance over decoders trained on empirical smoothed
spikes (meanR2 = 0.76, p= 4.01× 10−3 in one-sided
t-test).

Next, we wanted to compare the performance
of decoders trained on LFP LFADS rates to those
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trained on Spikes LFADS rates. We trained separ-
ate Spikes LFADS models and decoders on each
of the five sessions. We found that Spikes LFADS
rates yielded decoding performance very comparable
to the LFP LFADS counterpart (mean R2 = 0.82),
with no significant difference between the groups
(p = 0.64 in two-sided t-test) (figure 2(c), top right).
These results were consistent with visualizations of
the decoded cursor trajectories, shown for one session
in figure 2(d). To ensure the quality of LFP LFADS
model fits for an iBCI-like scenario, we also tested
whether models could generalize to unseen neural
data (supp. figure 3). Within the same recording day,
velocity decoding performance and reconstruction of
single-trial properties from LFP LFADS factors were
comparable regardless of whether data was seen dur-
ing model training.

Because the frequency band used for modeling
thus far was relatively high, we wanted to further eval-
uate the performance of LFP-based dynamics models
when trained on features from lower frequency bands
(100–200 Hz, 50–100 Hz, 25–50 Hz, and 0–8 Hz;
figure 2(e)). For each frequency band, we trained an
LFP-based dynamics model on four sessions of data
collected on the same calendar day and then trained
a decoder on the output LFP LFADS rates. On a
fifth session, we then downsampled the raw LFP sig-
nal to the Nyquist frequency of the upper bound of
each frequency range prior to computing LFP power.
Using this downsampled LFP power signal, we per-
formed model inference with the trained LFP LFADS
model to get the output LFADS rates, applied the
trained decoder, and computed velocityR2. We found
that while high-frequency LFP power (150–450 Hz)
achieved the highest performance in terms of velo-
city decoding, some bands such as 100–200 Hz and
0–8Hz offered reasonable decoding performance and
may offer further benefits in amplifier or ADC power
consumption. Other bands such as 50–100 Hz and
25–50 Hz yielded poor firing rate predictions with
little relationship to behavior (near-zero decoding
performance); this may be due to a lack of corres-
pondence between the LFPs in these bands and the
precise timing of spikes, which has been shown in pre-
vious work [25, 26].

Finally, we wanted to ensure that LFP-based
dynamics models maintained their performance
when using LFP features at a lower resolution
(figure 2(f)). This is important tomaintain the power
required to transmit the data in our theoretical wire-
less iBCI recording device. We trained separate LFP-
based dynamics models on an individual session of
data (the same session used in figures 2(b) and (d))
after converting the LFP power features (150–450Hz)
to 4-bit, 8-bit, and 16-bit resolution. We found that
no matter the resolution, the model yielded output
rates that decoded velocity consistently, with negli-
gible differences between them. Therefore, LFP-based

dynamics models do not fail with lower resolution
LFPs, allowing us to maintain the potential power
savings of an iBCI recording device that were accrued
using LFPs.

3.3. LFP-based dynamics models demonstrate high
reconstruction and decoding performance in an
unstructured monkey random target reaching task
Next, we wanted to ensure that our conclusions
would transfer to a less structured behavior,
so we tested LFP-based dynamics models (150–
450 Hz) on a monkey random target reaching task
(figure 3(a)). On each trial, a monkey controlled
a manipulandum to reach six successive targets
that appeared one after the other randomly on the
screen.

We again aimed to assess how well the mod-
els captured the neural data. Because this task was
unstructured and not amenable to trial averaging, we
chose to summarize the estimated firing rates using
demixed principal components analysis (dPCA) [64].
We fit the parameters of dPCA using the firing rates
of the LFP LFADS model by binning trials into
groups based on relative angle, and then applied those
parameters to the Spikes LFADS model rates as well
as the Empirical Spikes and Empirical LFP power.
We visualized each reach segment between each pair
of targets separately, colored by the relative angle
between the two targets (figure 3(b)). The LFP LFADS
and Spikes LFADS trajectories both captured clear
structure consistent with previous analyses of sim-
ilar tasks [41]. Additionally, both models revealed
more obvious task-based organization in the neural
data than either the Empirical Spikes or Empirical
LFP, further highlighting the benefit of dynamics
modeling.

We finally evaluated velocity decoding by training
a Wiener filter from each neural signal modality to
predict cursor velocity within each trial (figure 3(c)).
Predictions from LFP LFADS rates (R2 = 0.78) were
comparable in accuracy and structure to those from
Spikes LFADS (R2 = 0.80). They again exceeded that
of both the Empirical Spikes (R2 = 0.64) and the
Empirical LFP power (R2 = 0.46).

3.4. LFP-based dynamics models achieve
high-performance reconstruction and accurate
decoding of human attempted speech
Finally, we aimed to assess the utility of LFP-based
dynamics models (150–450 Hz) in a more com-
plex speech task performed by a human participant
(figure 4(a)). We performed an offline analysis of an
open-loop attempted speech task inwhich participant
T16 was asked to attempt to say one word from a 50-
word vocabulary [14] on each trial. In a closed-loop
version of the task, the only difference is that decoded
phonemes are displayed to the participant following
vocalization. The participant does not receive decoder
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Figure 3. LFP-based dynamics models uncover neural dynamics and accurately decode reach velocity in a monkey random target
reaching task. (a) Schematic of random target reaching task. (b) Projections of neural activity onto the top
condition-independent dPC and top 2 condition-dependent dPCs. The dPC parameters were determined using the LFP LFADS
denoised firing rates and applied to all four representations of neural activity: LFP LFADS rates, Spikes LFADS rates, Empirical
Spikes, and Empirical LFP. All neural signals were smoothed with a 30 ms Gaussian kernel prior to PCA for visualization. Each
reach is considered the submovement from one target to the next and is aligned in the window 200 ms before and 500 ms after the
alignment point. Trajectories are colored by relative angle between the targets. (c) Two-dimensional true cursor position
trajectories for three example trials, with targets indicated as blue squares; earlier targets are shaded lighter and later targets are
shaded darker (top). Example decoded cursor velocities for three trials of 6 submovements each (bottom). Decoded velocity
components are shown for decoders trained to predict from LFP LFADS rates, Spikes LFADS rates, Empirical Spikes smoothed
with a 30 ms Gaussian, and Empirical LFP power in the 150–450 Hz frequency band smoothed with a 30 ms Gaussian. The start
of each reach is indicated with the round marker, and target acquisition time is shown with a blue-shaded square. True cursor
velocity is shown by the black trace, and predicted cursor velocity from each neural signal modality is shown by the red trace.

feedback during vocalization in either version of the
task, which yields a close correspondence between
neural activity in the open- and closed-loop tasks and
suggests that the offline decoding results, which are by
nature open-loop, have a high likelihood of translat-
ing to online (closed-loop) performance.

We again visualized the consistency of PSTHs for
the empirical and LFADS output signals (figure 4(b)).
We found that LFP power appeared quite consistent
across channels, and that there was a greater struc-
tural difference between the LFP Power PSTHs (the
input signal) and the Spikes PSTHs (the output sig-
nal) than in the reaching datasets. Despite these fea-
tures, there remained a strong qualitative similarity
between the LFP LFADS and Spikes LFADS PSTHs.

We next trained the phoneme decoder to pre-
dict the intended sequence of phonemes from each
of the four neural signal modalities. Our dataset con-
sisted of 400 total trials (8 repeats of each word), of
which we reserved 20% for decoder validation. We

trained decoders with five different random seeds to
ensure consistency of the reported prediction accur-
acy on validation trials as phoneme error rate (PER)
(figure 4(c)). We found that Smoothed LFP yielded
the lowest performance (highest error rate) of all four
possible signals (meanPER= 0.69± 0.02). Smoothed
Spikes consistently yielded the highest performance
(lowest error rate; mean PER= 0.01± 0).

LFP LFADS rates (mean PER = 0.22 ± 0.05)
and Spikes LFADS rates (mean PER = 0.15 ± 0.06)
offered similar levels of error (p = 0.06 in two-sided
Wilcoxon signed-rank test). The consistency in per-
formance between Spikes LFADS and LFP LFADS
indicates that the two model types produced out-
puts that encode similar amounts of phoneme-related
information (example phoneme predictions shown
in figure 4(d)). The increase in PER from smoothed
spikes to both types of LFADS model outputs indic-
ates that the dynamical models may fail to capture
some information that is important for phoneme
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Figure 4. LFP-based dynamics models reconstruct firing rates and enable phoneme decoding in an attempted speech task. (a)
Schematic of a trial in the attempted speech task, in which participant T16 was asked to attempt to say one of fifty words. (b)
Example PSTHs for three example channels from a single session for smoothed LFP power, smoothed spikes, Spikes LFADS rates,
and LFP LFADS rates trained using LFP power from 150 to 450 Hz. Each color is a different word (see legend at bottom), with
solid lines indicating the trial average of neural activity for a given word 1000 ms before to 1000 ms after the computed speech
onset time and shaded regions representing the standard error of the mean. (c) Validation phoneme error rate (PER) for models
trained with each of the four input features: Smoothed LFP power, Smoothed Spikes, Spikes LFADS rates, or LFP LFADS rates.
Five decoders were trained with different random seeds. The height of each bar indicates the mean PER across the five decoders
and the black error bar indicates one standard deviation. (d) Example decoded outputs for each of the four input signal types in
ARPAbet notation [62].

decoding, and that further innovations in dynam-
ics models or adjustments to phoneme decoders are
needed.

3.5. Discussion
We introduced a new paradigm for training LFP-
based dynamics models to reconstruct spiking activ-
ity with the goal of reducing power consumption
whilemaintaining offline decoding performancewith
respect to spikes-based models. In our tests, LFP-
based dynamics models performed comparably to
spikes-based dynamics models and dramatically bet-
ter than LFP power alone for tasks encompassing
nonhuman primate reaching and human speech.
Importantly, this performance can be maintained by
running model inference with signals acquired with
much lower power than those used with traditional
spikes-based decoders.

While in this work we perform experiments using
LFADS as our dynamics model, these results may
hold with other base neural dynamics models such as
dynamics models based on neural ordinary differen-
tial equations [44, 45] or feedback control algorithms

[42], or with transformer models that use large con-
text windows to denoise neural data like the Neural
Data Transformer (NDT) [47]. Such models may
provide additional or alternative benefits when com-
pared to LFADS, such as interpretability, inference
speed, or flexible sequence lengths. In addition, our
demonstration that a continuous-valued signal can be
used to reconstruct spikesmay prompt further studies
of the utility of using smoothed spikes, normalized
spikes, or SBP as input signals to neural population
dynamics models.

Neural dynamics models can also achieve spatio-
temporal super-resolution by inferring missing
samples fromhigh-channel-count time series datasets
[65]. Such an approach may be advantageous in
increasing the number of channels that can be used
for decoding while keeping power consumption con-
stant: each channel could be sparsely sampled in time
so long as neural dynamics models are trained to
infer the missing timesteps. In combination with
our efforts to plausibly lower wireless iBCI recording
device power consumption, super-resolution training
approaches may be particularly useful for decoding
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applications where channel count has been shown to
be an important factor in performance, such as in
speech decoding [19].

A recent scientific study investigated the relation-
ship between various frequency bands of LFPs and
spiking activity by computing the correlation between
LFP power and the principal components of spik-
ing activity [25, 66]. Despite the difference between
this technique and our approach, which uses LFP
power to nonlinearly reconstruct firing rates and sub-
sequently evaluates behavioral decoding accuracy, we
find a remarkably similar relationship betweenmotor
cortical LFPs and spiking activity. Both the previ-
ous and current study find that higher frequency
bands have the strongest relationship, middle fre-
quency bands have a near-zero relationship, and very
low frequency bands have a moderate relationship.
Pushing forward a rich existing body of work [27, 28,
30–33], future studies may further illuminate the link
between these frequency bands of LFPs, spikes, and
behavior.

A commonly cited advantage of LFPs is their
robustness over time. While spike detection is
sensitive to recording interface instabilities due to
microshifts in array position or changes in array or
tissue properties over time [67, 68], LFPs tend to
exhibit both higher longevity, as they can be recorded
more reliably despite changes in array properties, and
stability, as they can be decoded with more consistent
performance over time [36–38]. As a result, our LFP-
based dynamics modeling approachmay have further
benefits for stable iBCI decoding, both on its own and
in combination with manifold alignment approaches
[56, 69, 70]. In addition, the robust qualities of the
LFP signal may allow for unsupervised aggregation
of data across sessions, in comparison to approaches
like LFADS ‘stitching’ that have previously required
knowledge of task structure [40]. LFP-based dynam-
ics models may also leverage LFP longevity—for
example, by using a model trained on data from
early in the device lifetime, our approach may sus-
tain decoding performance after array degradation
has occurred such that spikes can no longer reliably
be detected, extending upon previous spikes-based
approaches [71].

Recent works have also suggested that neural
activity patterns underlying similar behaviors may be
shared to some extent across individuals [72, 73]. This
suggests that dynamics models, including our LFP-
based formulation, may transfer across individuals;
that is, if a model is trained using the LFPs and spikes
from one individual, it may be possible to reconstruct

neural firing rates from the LFPs of another indi-
vidual. If this is the case, long-term investigations
may explore whether it is possible to estimate spikes
from other sources of LFPs with different proper-
ties than the signals used here, such as that recorded
using electrocorticography, as signals recorded from
these devices typically cannot yield high-fidelity spik-
ing activity on their own.

Our offline measures of the performance of LFP-
based dynamics models demonstrate their poten-
tial to combine the power benefits of LFPs with the
decoding benefits of spiking activity. Future investig-
ation into the benefits of these models during online
iBCI use will help us understand how they may influ-
ence wireless device development and whether they
may enable better real-world devices.
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